Möbius numeration systems with discrete groups

Bc. Tomáš Hejda
Supervisor:
Prof. Petr Kůrka, CTS, ASCR \& Charles University

Master's Thesis, June 2012

Outline

(1) Möbius numeration systems
(2) Hyperbolic geometry
(3) Fuchsian groups
(c) Results

Motivation - Möbius number systems

- Möbius transformation: $M_{\mathbf{A}}: z \mapsto \frac{a z+b}{c z+d}$ with $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$ and $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)>0$
- Möbius transformations form a group isometric to $\mathrm{PGL}^{+}(2, \mathbb{R})$
- Möbius number system: given by $F_{a}, a \in \mathcal{A}$ and $\Sigma \subseteq \mathcal{A}^{\mathbb{N}}$
- $u=u_{1} u_{2} \cdots u_{n} \quad \rightarrow \quad F_{u}:=F_{u_{1}} F_{u_{2}} \cdots F_{u_{n}}$.
- infinite word \mathbf{u} represents $x \in \overline{\mathbb{R}}$ if

$$
\lim _{n \rightarrow \infty} F_{\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{n}}(i)=x
$$

- condition 1: every $\mathbf{u} \in \Sigma$ is a representation
- condition 2 : every $x \in \mathbb{\mathbb { R }}$ has a representation
- F_{Σ} is a subset of the group $\left\langle F_{a}, a \in \mathcal{A}\right\rangle$

Motivation - Möbius number systems

Example (Binary representations)

Let

$$
F_{\sharp}: z \mapsto 2 z, \quad F_{0}: z \mapsto z / 2, \quad F_{1}: z \mapsto(z+1) / 2, \quad F_{\overline{1}}: z \mapsto(z-1) / 2 .
$$

Let Σ be set of words of the form

$$
\{1,0, \overline{1}\}^{\omega}, \quad \sharp^{n}\{1, \overline{1}\}\{1,0, \overline{1}\}^{\omega}, \quad \sharp^{\omega} .
$$

Then

$$
\sharp^{n} a_{1} a_{2} a_{3} \cdots \text { represents } 2^{n} \sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}}, \quad \sharp^{\omega} \text { represents } \infty \text {. }
$$

All $x \in \overline{\mathbb{R}}$ have a representation $\Longrightarrow(F, \Sigma)$ is a Möbius number system.

Hyperbolic plane

- Möbius transformations are isometries of the hyperbolic plane
upper half-plane \mathbb{U}

Transformation properties

- Isometric circle $I(M):=\left\{z \mid M^{\bullet}(z)=1\right\}$
- Expansion area $V(M):=\left\{z \mid\left(M^{-1}\right)^{\bullet}(z)>1\right\}$

- Example: $T: z \mapsto 4 z$
- I(M) V(M)

Fuchsian groups and Möbius number systems

- A group G of MTs is Fuchsian, if it is discrete
- A fundamental domain of G :
such $P \subset \mathbb{U}$ that its G-images tesselate \mathbb{U}

Fuchsian groups and Möbius number systems

- A group G of MTs is Fuchsian, if it is discrete
- A fundamental domain of G : such $P \subset \mathbb{U}$ that its G-images tesselate \mathbb{U}

Example

Group generators

$M_{0}(z)=(2+1 / \sqrt{3}) z$,
$M_{1}(z)=\frac{z \sqrt{3}+1}{z+\sqrt{3}}$

+ bounded fundamental domain
+ many group identities
- irrational

Fuchsian groups and Möbius number systems

- A group G of MTs is Fuchsian, if it is discrete
- A fundamental domain of G : such $P \subset \mathbb{U}$ that its G-images tesselate \mathbb{U}

Example

Group generators
$M_{0}(z)=z / 4$,
$M_{1}(z)=\frac{5 z+4}{4 z+5}$

- unbounded fundamental domain
- only trivial group identities
+ rational

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domain exist?

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domain exist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domain exist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders 1, 2, 3, 4, 6, ∞.

More results - Fuchsian groups

Theorem (4.12.)

Let $G=\left\langle M_{1}, \ldots, M_{k}\right\rangle$ be a group of Möbius transformations such that none of M_{j} fixes i and the regions

$$
\begin{gathered}
V\left(M_{1}\right), \ldots, V\left(M_{k}\right), \\
V\left(M_{1}^{-1}\right), \ldots, V\left(M_{k}^{-1}\right)
\end{gathered}
$$

are pairwise disjoint. Then G is a Fuchsian group.

Example

Group generators:

$$
M_{0}(z)=z / 4, \quad M_{1}(z)=\frac{5 z+4}{4 z+5}
$$

More results - generalized Ford domains

Theorem (L. R. Ford, 1925)
Let G be a Fuchsian group such that only Id $\in G$ fixes i. Then the set

$$
U>\bigcup_{\substack{M \in G \\ M \neq \mathrm{ld}}} V(M)
$$

is a fundamental domain of G.

More results - generalized Ford domains

Theorem (L. R. Ford, 1925)

Let G be a Fuchsian group such that only $I d \in G$ fixes i. Then the set

$$
U>\bigcup_{\substack{M \in G \\ M \neq \mathrm{ld}}} V(M)
$$

is a fundamental domain of G.

Theorem (4.9.)

Let G be a Fuchsian group with exactly r elements fixing i. Then the set

$$
\mathbb{U} \backslash \bigcup_{\substack{M \in G \\ M(i) \neq i}} V(M)
$$

comprises exactly r copies of a fundamental domain of G.

More results - generalized Ford domains

Example (Modular group)

- Transformations $z \mapsto \frac{a z+b}{c z+d}$
- Restrictions $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$
- The elements $z \mapsto z$ and $z \mapsto-1 / z$ fix the point i

More results - generalized Ford domains

Example (Modular group)

- Transformations $z \mapsto \frac{a z+b}{c z+d}$
- Restrictions $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$
- The elements $z \mapsto z$ and $z \mapsto-1 / z$ fix the point i

More results - Angles of rotation

- Let $M \neq \mathrm{Id}$ have a fixed point s inside \mathbb{U}
- Then M is a hyperbolic rotation around the point s by angle φ_{M}
- These M are called elliptic transformations

Theorem (4.18., explained by example)

- The theorem discuss the existence of elliptic transformations in G.
- The angle of rotation φ_{M} is sum of the angles at (some) vertices of the domain.
- M is identity $\Longleftrightarrow \varphi_{M} \in 2 \pi \mathbb{Z}$.

More results - Angles of rotation

Example

- Transformations

$$
M_{0}: z \mapsto \frac{(1+\sqrt[4]{5})^{2}}{(1-\sqrt[4]{5})^{2}} z, \ldots
$$

- The angles at vertices are $2 \pi / 5$
- Therefore:
$F_{0} F_{1}^{-1} F_{2} F_{3}^{-1} F_{4}=\mathrm{Id}$ (green)
$F_{0} F_{4}^{-1} F_{3} F_{2}^{-1} F_{1}=\mathrm{Id}$ (yellow)

Conclusions

(1) We conjecture that no rational Fuchsian group with bounded fundamental domain exist.
(2) We prove several statements concerning Fuchsian groups:

- discreteness of a large family of groups;
- shape of a fundamental domain of a special kind;
- existence of elliptic transformations in a group.

Most notable references

(1) Alan F. Beardon. The geometry of discrete groups. 1983.
(2) Lester R. Ford. The fundamental region for a Fuchsian group. 1925.
(3) Svetlana Katok. Fuchsian groups. 1992.
(9) Petr Kůrka. A symbolic representation of the real Möbius group. 2008.
(3) John M. H. Olmsted. Discussions and Notes: Rational Values of Trigonometric Functions. 1945.
(1) A. Rényi. Representations for real numbers and their ergodic properties. 1957.

Compact fundamental domains

U jiných klíčových tvrzení pak čtenáří nezbyde, aby si je zformuloval sám - například, že kompaktnost fundamentální domény je vlastností grupy a nezávisí na volbē fundamentální domény

- We do not claim or discuss such proposition, because it is not necessary
- We discuss existence of a compact fundamental domain
- Existence of non-compact f.d. is not necessarily relevant.

Theorem

Let $G=\left\langle M_{1}, \ldots, M_{k}\right\rangle$ be a Fuchsian group such that none of M_{j} fixes i and the regions $V\left(M_{1}\right), \ldots, V\left(M_{k}\right), V\left(M_{1}^{-1}\right), \ldots, V\left(M_{k}^{-1}\right)$ are pairwise disjoint. Then G is a Fuchsian group.

Proof.

- [Beardon, Theorem 8.4.1]: G is Fuchsian \Longleftrightarrow the fixed points of elliptic elements do not accumulate at identity.
- This is true since if they accumulated at identity, P and $M(P)$ would overlap for some elliptic M (and we know that $P \cap M(P)=\emptyset$ for all $M \neq \mathrm{Id}$).

Example 2.4

Example (In thesis)

- Subshift: $\Sigma=\left\{\sharp^{\mathbb{N}}, 0^{\mathbb{N}}\right\} \cup\left(\sharp^{*} \cup 0^{*}\right)\left(\{-b, \ldots,-1\}\{-b, \ldots, 0\}^{\mathbb{N}}\right.$ $\left.\cup\{1, \ldots, b\}\{0, \ldots, b\}^{\mathbb{N}}\right)$
- Forbidden strings: $X=\{\sharp 0\} \cup\{a \sharp \mid a \in\{-b, \ldots, b\}\}$
$\cup\left\{a a^{\prime} \mid a, a^{\prime} \in\{-b, \ldots, b\}, a \cdot a^{\prime}<0\right\}$
- X allows $a 0^{+}(-a), \Sigma$ does not (it is not SFT)

Example (Correct)

- Subshift: distinguish $0 \in\{0, \ldots, b\}$ and $-0 \in\{-b, \ldots,-0\}$
- Forbidden strings: $X=\{\sharp 0, \sharp(-0)\} \cup\{a \sharp \mid a \in\{-b, \ldots, b\}\}$ $\cup\left\{a a^{\prime}, a^{\prime} a \mid a \in\{0, \ldots, b\}, a^{\prime} \in\{-b, \ldots,-0\}\right\}$
- X is finite and Σ is SFT.

