Möbius numeration systems with discrete groups

Bc. Tomáš Hejda

Supervisor:

Prof. Petr Kůrka, CTS, ASCR & Charles University

Master's Thesis, June 2012

Outline

- Möbius numeration systems
- 4 Hyperbolic geometry
- Fuchsian groups
- Results

Motivation – Möbius number systems

- Möbius transformation: $M_{\mathbf{A}}: z \mapsto \frac{az+b}{cz+d}$ with $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2\times 2}$ and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} > 0$
 - Möbius transformations form a group isometric to $PGL^+(2,\mathbb{R})$
- Möbius number system: given by $F_a, a \in \mathcal{A}$ and $\Sigma \subseteq \mathcal{A}^{\mathbb{N}}$
 - $\bullet \ u = u_1 u_2 \cdots u_n \quad \rightarrow \quad F_u := F_{u_1} F_{u_2} \cdots F_{u_n}.$
 - infinite word **u** represents $x \in \overline{\mathbb{R}}$ if

$$\lim_{n\to\infty}F_{\mathbf{u}_1\mathbf{u}_2\cdots\mathbf{u}_n}(i)=x$$

- condition 1: every $\mathbf{u} \in \Sigma$ is a representation
- condition 2: every $x \in \overline{\mathbb{R}}$ has a representation
- F_{Σ} is a subset of the group $\langle F_a, a \in \mathcal{A} \rangle$

Motivation – Möbius number systems

Example (Binary representations)

Let

$$F_{\sharp}: z\mapsto 2z, \quad F_0: z\mapsto z/2, \quad F_1: z\mapsto (z+1)/2, \quad F_{\overline{1}}: z\mapsto (z-1)/2.$$

Let Σ be set of words of the form

$$\{1,0,\overline{1}\}^{\omega},\qquad \sharp^{n}\{1,\overline{1}\}\{1,0,\overline{1}\}^{\omega},\qquad \sharp^{\omega}.$$

Then

$$\sharp^n a_1 a_2 a_3 \cdots$$
 represents $2^n \sum_{k=1}^{\infty} \frac{a_k}{2^k}$, \sharp^{ω} represents ∞ .

All $x \in \overline{\mathbb{R}}$ have a representation $\implies (F, \Sigma)$ is a Möbius number system.

Hyperbolic plane

 \bullet Möbius transformations are isometries of the hyperbolic plane $\text{upper half-plane } \mathbb{U} \qquad \text{unit disc } \mathbb{D}$

Transformation properties

- Isometric circle $I(M) := \{z | M^{\bullet}(z) = 1\}$
- Expansion area $V(M) := \{z | (M^{-1})^{\bullet}(z) > 1\}$

- Example: $T: z \mapsto 4z$
- I(M) V(M)

Fuchsian groups and Möbius number systems

- A group G of MTs is Fuchsian, if it is discrete
- A fundamental domain of G: such P ⊂ U that its G-images tesselate U

Example

Group generators

$$M_0(z) = (2 + 1/\sqrt{3})z$$
,

$$M_1(z) = \frac{z\sqrt{3}+1}{z+\sqrt{3}}$$

- bounded fundamental domain
- + many group identities
- irrational

Fuchsian groups and Möbius number systems

- A group *G* of MTs is Fuchsian, if it is discrete
- A fundamental domain of G: such P ⊂ U that its G-images tesselate U

Example

Group generators

$$M_0(z) = \left(2 + 1/\sqrt{3}\right)z,$$

$$M_1(z) = \frac{z\sqrt{3}+1}{z+\sqrt{3}}$$

- + bounded fundamental domain
- + many group identities
- irrational

Fuchsian groups and Möbius number systems

- A group G of MTs is Fuchsian, if it is discrete
- A fundamental domain of G: such P ⊂ U that its G-images tesselate U

Example

Group generators

$$M_0(z) = z/4$$
,
 $M_1(z) = \frac{5z+4}{4z+5}$

- unbounded fundamental domain
- only trivial group identities
- + rational

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domain exist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders $1,2,3,4,6,\infty$.

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domain exist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders $1,2,3,4,6,\infty$

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domain exist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders $1, 2, 3, 4, 6, \infty$.

More results — Fuchsian groups

Theorem (4.12.)

Let $G = \langle M_1, \dots, M_k \rangle$ be a group of Möbius transformations such that none of M_j fixes i and the regions

$$V(M_1), \ldots, V(M_k),$$

 $V(M_1^{-1}), \ldots, V(M_k^{-1})$

are pairwise disjoint. Then G is a Fuchsian group.

Example

Group generators:

$$M_0(z) = z/4$$
, $M_1(z) = \frac{5z+4}{4z+5}$

4□ > 4ⓓ > 4՝ ≧ > 4 ≧ > □ ≥ 90,0

Theorem (L. R. Ford, 1925)

Let G be a Fuchsian group such that only $Id \in G$ fixes i. Then the set

$$\mathbb{U} \setminus \bigcup_{\substack{M \in G \\ M \neq \mathsf{Id}}} V(M)$$

is a fundamental domain of G.

Theorem (4.9.)

Let G be a Fuchsian group with exactly r elements fixing i. Then the set

$$\mathbb{U} \setminus \bigcup_{\substack{M \in G \\ M(i) \neq i}} V(M)$$

comprises exactly r copies of a fundamental domain of G.

Theorem (L. R. Ford, 1925)

Let G be a Fuchsian group such that only $Id \in G$ fixes i. Then the set

$$\mathbb{U} \setminus \bigcup_{\substack{M \in G \\ M \neq \mathsf{Id}}} V(M)$$

is a fundamental domain of G.

Theorem (4.9.)

Let G be a Fuchsian group with exactly r elements fixing i. Then the set

$$\mathbb{U} \setminus \bigcup_{\substack{M \in G \\ M(i) \neq i}} V(M)$$

comprises exactly r copies of a fundamental domain of G.

Example (Modular group)

- Transformations $z \mapsto \frac{az+b}{cz+d}$
- ullet Restrictions $a,b,c,d\in\mathbb{Z}$ and ad-bc=1
- ullet The elements $z\mapsto z$ and $z\mapsto -1/z$ fix the point i

Example (Modular group)

- Transformations $z \mapsto \frac{az+b}{cz+d}$
- ullet Restrictions $a,b,c,d\in\mathbb{Z}$ and ad-bc=1
- The elements $z \mapsto z$ and $z \mapsto -1/z$ fix the point i

More results — Angles of rotation

- Let $M \neq \mathsf{Id}$ have a fixed point s inside \mathbb{U}
- ullet Then M is a hyperbolic rotation around the point s by angle $arphi_M$
- These *M* are called elliptic transformations

Theorem (4.18., explained by example)

- The theorem discuss the existence of elliptic transformations in G.
- The angle of rotation φ_M is sum of the angles at (some) vertices of the domain.
- M is identity $\iff \varphi_M \in 2\pi \mathbb{Z}$.

More results — Angles of rotation

Example

Transformations

$$M_0: z \mapsto \frac{\left(1+\sqrt[4]{5}\right)^2}{\left(1-\sqrt[4]{5}\right)^2}z, \ldots$$

- \bullet The angles at vertices are $2\pi/5$
- Therefore:

$$F_0F_1^{-1}F_2F_3^{-1}F_4 = \text{Id (green)}$$

 $F_0F_4^{-1}F_3F_2^{-1}F_1 = \text{Id (yellow)}$

Conclusions

- We conjecture that no rational Fuchsian group with bounded fundamental domain exist.
- We prove several statements concerning Fuchsian groups:
 - discreteness of a large family of groups;
 - shape of a fundamental domain of a special kind;
 - existence of elliptic transformations in a group.

Most notable references

- Alan F. Beardon. *The geometry of discrete groups.* 1983.
- 2 Lester R. Ford. The fundamental region for a Fuchsian group. 1925.
- 3 Svetlana Katok. Fuchsian groups. 1992.
- Petr Kůrka. A symbolic representation of the real Möbius group. 2008.
- John M. H. Olmsted. Discussions and Notes: Rational Values of Trigonometric Functions. 1945.
- A. Rényi. Representations for real numbers and their ergodic properties. 1957.

Compact fundamental domains

U jiných klíčových tvrzení pak čtenáři nezbyde, aby si je zformuloval sám — například, že kompaktnost fundamentální domény je vlastností grupy a nezávisí na volbě fundamentální domény

- We do not claim or discuss such proposition, because it is not necessary
- We discuss existence of a compact fundamental domain
- Existence of non-compact f.d. is not necessarily relevant.

Theorem 4.12.

Theorem

Let $G = \langle M_1, \ldots, M_k \rangle$ be a Fuchsian group such that none of M_j fixes i and the regions $V(M_1), \ldots, V(M_k), V(M_1^{-1}), \ldots, V(M_k^{-1})$ are pairwise disjoint. Then G is a Fuchsian group.

Proof.

- [Beardon, Theorem 8.4.1]: G is Fuchsian \iff the fixed points of elliptic elements do not accumulate at identity.
- This is true since if they accumulated at identity, P and M(P) would overlap for some elliptic M (and we know that $P \cap M(P) = \emptyset$ for all $M \neq \text{Id}$).

Example (In thesis)

- Subshift: $\Sigma = \{\sharp^{\mathbb{N}}, 0^{\mathbb{N}}\} \cup (\sharp^* \cup 0^*) (\{-b, \dots, -1\}\{-b, \dots, 0\}^{\mathbb{N}} \cup \{1, \dots, b\}\{0, \dots, b\}^{\mathbb{N}})$
- Forbidden strings: $X = \{\sharp 0\} \cup \{a\sharp \mid a \in \{-b, \dots, b\}\}$ $\cup \{aa' \mid a, a' \in \{-b, \dots, b\}, a \cdot a' < 0\}$
- X allows $a0^+(-a)$, Σ does not (it is not SFT)

Example (Correct)

- ullet Subshift: distinguish $0 \in \{0,\ldots,b\}$ and $-0 \in \{-b,\ldots,-0\}$
- Forbidden strings: $X = \{\sharp 0, \sharp (-0)\} \cup \{a\sharp \mid a \in \{-b, \dots, b\}\}$ $\cup \{aa', a'a \mid a \in \{0, \dots, b\}, a' \in \{-b, \dots, -0\}\}$
- X is finite and Σ is SFT.