Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

On the negative base greedy and lazy representations

<u>Tomáš Hejda</u>, Zuzana Masáková and Edita Pelantová tohecz@gmail.com

Doppler Institute & Department of Mathematics, FNSPE, Czech Technical University in Prague

14èmes Journées Montoises, Louvain-la-Neuve, Belgium 2012, September 11-14

Numeration Systems •000	Extremal representations	Admissibility & Uniqueness	Conclusions

Numeration systems

Numeration system is a system of representations of (some) real numbers.

Real positional numeration systems

Definition Given: $\alpha \in \mathbb{R}$ with $|\alpha| > 1$, finite alphabet $\mathcal{A} \in \mathbb{R}$. String $\bullet a_1 a_2 a_3 \ldots \in \mathcal{A}^{\mathbb{N}}$ is (α, \mathcal{A}) -representation of $x \in \mathbb{R}$, if $x = \frac{a_1}{\alpha} + \frac{a_2}{\alpha^2} + \frac{a_3}{\alpha^3} + \cdots$

0000	000000	000	000
Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

Which numbers have a representation

Let $\mathcal{I}_{\alpha,\mathcal{A}} = \{x \mid x \text{ has an } (\alpha,\mathcal{A})\text{-representation}\}.$

Case α = β > 1: (M. Pedicini, 2005) Necessary and sufficient condition for *I* to be an interval.

It suffices: $\mathcal{A} = \{0, \dots, \lfloor \beta \rfloor\}$

$$\mathcal{I} = \left[0, \frac{\lfloor eta
floor}{eta - 1}
ight]$$

• Case $\alpha = -\beta < -1$:

$$\mathcal{I} = \left[-rac{eta \lfloor eta
floor}{eta^2 - 1}, rac{\lfloor eta
floor}{eta^2 - 1}
ight]$$

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions
	0000000		000

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x) := \alpha x D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$x = \frac{D(x)}{\alpha} + \frac{D(T(x))}{\alpha^2} + \frac{D(T^2(x))}{\alpha^3} + \cdots$$

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions 000

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x) := \alpha x D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$x = \frac{D(x)}{\alpha} + \frac{D(T(x))}{\alpha^2} + \frac{D(T^2(x))}{\alpha^3} + \cdots$$

Example (Binary representations)

Let

$$\alpha := 2, \qquad \qquad \mathcal{A} := \{0, 1\}, \qquad \qquad \mathcal{D}(x) := \lfloor 2x \rfloor$$

Then

$$\mathcal{T}(x) = 2x - \lfloor 2x
floor = \{2x\} \in [0,1) \text{ and } [0,1) \subseteq \mathcal{I}.$$

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x) := \alpha x D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$x = \frac{D(x)}{\alpha} + \frac{D(T(x))}{\alpha^2} + \frac{D(T^2(x))}{\alpha^3} + \cdots$$

Example (Rényi, 1957)

Let

$$\alpha := \phi = \frac{1+\sqrt{5}}{2}, \qquad D(x) = \lfloor \phi x \rfloor, \qquad A = \{0, 1\}$$

Then

$$\mathcal{T}(x) = \phi x - \lfloor \phi x
floor = \{\phi x\} \in [0,1) \quad ext{and} \quad [0,1) \subseteq \mathcal{I} = [0,\phi].$$

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x) := \alpha x D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$x = \frac{D(x)}{\alpha} + \frac{D(T(x))}{\alpha^2} + \frac{D(T^2(x))}{\alpha^3} + \cdots$$

Example (Ito, Sadahiro, 2009)

Let

$$\alpha := -\phi, \qquad \mathcal{A} = \{0, 1\}, \qquad D(x) = \lfloor -\phi x + \frac{1}{\phi} \rfloor$$

Then

$$T(x):=\{-\phi x+\tfrac{1}{\phi}\}-\tfrac{1}{\phi}\in [-\tfrac{1}{\phi},\tfrac{1}{\phi^2}) \quad \text{and} \quad [-\tfrac{1}{\phi},\tfrac{1}{\phi^2})\subseteq \mathcal{I}=[-\tfrac{1}{\phi},\tfrac{1}{\phi^2}).$$

Hejda, Masáková, Pelantová (Prague)

Numerati 000●	ion System	S	Extremal representations	Admissibility & Uniqueness 000	Conclusions 000

Approach TWO: Criteria

- For $x \in \mathcal{I}$ consider all $\bullet a_1 a_2 a_3 \cdots \in \mathcal{A}^{\mathbb{N}}$ such that $x = \sum a_k \alpha^{-k}$
- This (in general) allows multiple representations of x
- Give a criterion saying which one to choose

Idea: extremal representations

Numeration Systems	Extremal representations •000000	Admissibility & Uniqueness	Conclusions
F , 1			

Definition (Lexicographical ordering)

Let $\mathbf{a} = \mathbf{\bullet} a_1 a_2 a_3 \cdots$ and $\mathbf{b} = \mathbf{\bullet} b_1 b_2 b_3 \cdots$ be representations. Then $\mathbf{a} \prec_{\mathsf{lex}} \mathbf{b}$ if

 $a_k < b_k$ for $k = \min\{i \ge 1 | a_i \neq b_i\}$.

Numeration Systems	Extremal representations •000000	Admissibility & Uniqueness	Conclusions
F			

Definition (Lexicographical ordering)

Let $\mathbf{a} = \mathbf{\bullet} a_1 a_2 a_3 \cdots$ and $\mathbf{b} = \mathbf{\bullet} b_1 b_2 b_3 \cdots$ be representations. Then $\mathbf{a} \prec_{\mathsf{lex}} \mathbf{b}$ if

$$a_k < b_k$$
 for $k = \min\{i \ge 1 | a_i \neq b_i\}$.

Definition (Alternate ordering)

Let $\mathbf{a} = \mathbf{\bullet} a_1 a_2 a_3 \dots$ and $\mathbf{b} = \mathbf{\bullet} b_1 b_2 b_3 \cdots$ be representations. Then $\mathbf{a} \prec_{\mathsf{alt}} \mathbf{b}$ if

 $(-1)^k a_k < (-1)^k b_k$ for $k = \min\{i \ge 1 | a_i \ne b_i\}.$

Numeration Syste	ms	Extremal representations 000000	Admissibility & Uniqueness	Conclusions
_		_		

Definition (Lazy and greedy representations)

Let b > +1 be a positive base. The maximal representation with respect to the lexicographical order is called the **greedy representation**, the minimal one is the **lazy representation**.

Numeration	Systems

Definition (Lazy and greedy representations)

Let b > +1 be a positive base. The maximal representation with respect to the lexicographical order is called the **greedy representation**, the minimal one is the **lazy representation**.

Let b < -1 be a negative base. The maximal representation with respect to the alternate order is called the greedy representation, the minimal one is the lazy representation.

Numeration	Systems

Definition (Lazy and greedy representations)

Let b > +1 be a positive base. The maximal representation with respect to the lexicographical order is called the **greedy representation**, the minimal one is the **lazy representation**.

Let b < -1 be a negative base. The maximal representation with respect to the alternate order is called the greedy representation, the minimal one is the lazy representation.

Proposition (K. Dajani, C. Kalle, 2010)

There is no transformation (approach ONE) generating lazy and greedy representations in negative base.

Numeration Systems		Extremal re	epresentations	Admissibility & Un 000	Admissibility & Uniqueness			
		1.						

How to obtain extremal representations

We suppose:
$$\alpha = -\beta \notin \mathbb{Z}$$
, $\mathcal{A} = \{0, \dots, \lfloor \beta \rfloor\}$

Stated in the means of algorithm by (K. Dajani, C. Kalle, 2010)

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions 000

How to obtain extremal representations II

Greedy "transformation":

- use T_m on odd positions
- use T_v on even positions

Numeration System	Extremal representations	Admissibility & Uniqueness 000	Conclusions

How to obtain extremal representations II

Greedy "transformation":

- use T_m on odd positions
- use T_v on even positions

How to obtain extremal representations II

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

Alternation of transformations

- Symmetry between greedy and lazy case \implies we will focus on greedy
- Define: $T_G(x) = T_v T_m(x)$ and $D_G = \beta^2 x T_G(x)$
- D_G uses digits from the alphabet $\mathcal{B} = \{-eta b + a \mid a, b \in \mathcal{A}\}$
- T_G is a well-defined β^2 -transformation with a positive base

Step-by-step how-to for greedy $(-\beta)$ -representations

Three steps:

- **1** Represent x using T_G , D_G in alphabet $\mathcal{B} = -\beta \mathcal{A} + \mathcal{A}$
- 2 Substitution $\mathcal{B} \mapsto \mathcal{A} : -\beta b + a \mapsto ba$
- **③** The result is the greedy $(-\beta, \mathcal{A})$ -representation or x
 - Main idea:

$$ba\prec_{\mathsf{alt}} dc \quad \Longleftrightarrow \quad -beta+a < -deta+c \qquad ext{for } a,b\in\mathcal{A}$$

Main advantage: Allows to use general knowledge of radix transformations

Numeration Systems	Extremal representations	Admissibility & Uniqueness •00	Conclusions 000
Admissibility co	nditions		

• Using result from (C. Kalle, W. Steiner, 2012)

Theorem

Let $X_1 X_2 X_3 \dots \in \mathcal{B}^{\mathbb{N}}$. Then there exists $x \in [l, l+1)$ such that $d_G(x) = X_1 X_2 X_3 \dots$ if and only if for every $k \ge 1$ we have $X_k \le D_G^*(l+1)$ and $X_{k+1} X_{k+2} X_{k+3} \dots \prec_{\text{lex}} \begin{cases} d_G^*(T_G^*(l+1)) & \text{if } X_k = D_G^*(l+1), \\ d_G^*(l+\{\beta\}) & \text{if } X_k = -b\beta + \lfloor\beta\rfloor < D_G^*(l+1), \\ no \ condition & otherwise, \end{cases}$

where d_G^* and T_G^* are left-continuous modifications of d_G and T_G .

0000	0000000		000
Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

Forbidden strings

For some β , we can get forbidden strings.

Corollary

```
String \bullet_{a_1a_2a_3}\cdots over \mathcal{A} = \{0,1\} is a greedy representation in base -\phi if and only if
```

- none of $1^{2k}0$ nor $0^{2k-1}1$ is its prefix;
- **2** none of 0^{ω} nor 1^{ω} is its infinite suffix;
- **3** none of $10^{2k}1$ nor $01^{2k}0$ is its factor.

Unique repre	contations		
		000	
Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions

Unique representations

• x has a unique representation $\iff d_G(x) = d_L(x)$

Theorem (K. Dajani, C. Kalle, 2010)

The numbers with unique $(-\beta)$ -representation are of Lebesgue measure zero, for all $\beta > 1$. There are only two such points for all $\beta \leq \phi$.

0000		Admissibility & Oniqueness 00●	000				
Unique representations							

• x has a unique representation $\iff d_G(x) = d_L(x)$

Theorem (K. Dajani, C. Kalle, 2010)

The numbers with unique $(-\beta)$ -representation are of Lebesgue measure zero, for all $\beta > 1$. There are only two such points for all $\beta \leq \phi$.

Proposition

Let $\mu = 1.839\cdots$ be the 'Tribonacci constant', root of $x^3 - x^2 - x - 1$. Then all strings over the pairs of digits $\{01, 10\}$ are admissible as both greedy and lazy $(-\mu)$ -representations.

Unique represe	ntations		
Numeration Systems	Extremal representations 0000000	Admissibility & Uniqueness	Conclusions 000

• x has a unique representation $\iff d_G(x) = d_L(x)$

Theorem (K. Dajani, C. Kalle, 2010)

The numbers with unique $(-\beta)$ -representation are of Lebesgue measure zero, for all $\beta > 1$. There are only two such points for all $\beta \leq \phi$.

Proposition

Let $\mu = 1.839\cdots$ be the 'Tribonacci constant', root of $x^3 - x^2 - x - 1$. Then all strings over the pairs of digits $\{01, 10\}$ are admissible as both greedy and lazy $(-\mu)$ -representations.

Theorem

Let $\beta > 1 + \sqrt{3} = 2.732$. Then there are uncountably many numbers with unique $(-\beta)$ -representations over the alphabet $\{0, \ldots, \lfloor\beta\rfloor\}$.

Numeration Systems	Extremal representations	Admissibility & Uniqueness	Conclusions •00
Optimal represe	entations		

- • *"* • •
 - Another "extremal" representation

Definition (C. Dajani, M. de Vries, V. Komornik, P. Loreti, 2011) String $\bullet a_1 a_2 a_3 \dots \in \mathcal{A}^{\mathbb{N}}$ is optimal (α, \mathcal{A}) -representation if

$$\left|x-\sum_{k=1}^{n}\frac{a_{k}}{\alpha^{k}}\right| \leq \left|x-\sum_{k=1}^{n}\frac{b_{k}}{\alpha^{k}}\right|$$

for each $n \geq 1$ and each $\bullet b_1 b_2 b_3 \cdots \in \mathcal{A}^{\mathbb{N}}$.

- D+dV+K+L study for $\alpha > 1$
- Properties for $\alpha < -1$ and $\alpha \in \mathbb{C}$?

Numeration Systems	Extremal representations	Admissibility & Uniqueness 000	Conclusions ○●○
Conclusions			

- Stating the algorithm for greedy and lazy in the means of transformations
- Lexicographic admissibility conditions
- Results on unique representations

Open problems:

- Dynamical properties (ergodicity, exactness, invariant measures, ...)
- Full description of unique representations
- Optimal representations

Numeration Systems	Extremal representations	Admissibility & Uniqueness 000	Conclusions 00●
References			

- K. Dajani, C. Kalle. Transformations generating negative β-expansions. (2010)
- K. Dajani, M. de Vries, V. Komornik, P. Loreti. Optimal expansions in non-integer bases. 2011
- S. Ito, T. Sadahiro. Beta-expansions with negative bases. 2009
- C. Kalle, W. Steiner. Beta-expansions, natural extensions and multiple tilings associated with Pisot units. 2010
- M. Pedicini. Greedy expansions and sets with deleted digits. 2005
- A. Rényi. Representations for real numbers and their ergodic properties. 1957