On the negative base greedy and lazy representations

Tomáš Hejda, Zuzana Masáková and Edita Pelantová tohecz@gmail.com
Doppler Institute \& Department of Mathematics, FNSPE, Czech Technical University in Prague

14èmes Journées Montoises, Louvain-la-Neuve, Belgium 2012, September 11-14

Numeration systems

Numeration system is a system of representations of (some) real numbers.

Real positional numeration systems

Definition

Given: $\quad \alpha \in \mathbb{R}$ with $|\alpha|>1, \quad$ finite alphabet $\mathcal{A} \in \mathbb{R}$.
String $\bullet a_{1} a_{2} a_{3} \ldots \in \mathcal{A}^{\mathbb{N}}$ is (α, \mathcal{A})-representation of $x \in \mathbb{R}$, if

$$
x=\frac{a_{1}}{\alpha}+\frac{a_{2}}{\alpha^{2}}+\frac{a_{3}}{\alpha^{3}}+\cdots
$$

Which numbers have a representation

Let $\mathcal{I}_{\alpha, \mathcal{A}}=\{x \mid x$ has an (α, \mathcal{A})-representation $\}$.

- Case $\alpha=\beta>1$: (M. Pedicini, 2005) Necessary and sufficient condition for \mathcal{I} to be an interval.

It suffices: $\mathcal{A}=\{0, \ldots,\lfloor\beta\rfloor\}$

$$
\mathcal{I}=\left[0, \frac{\lfloor\beta\rfloor}{\beta-1}\right]
$$

- Case $\alpha=-\beta<-1$:

$$
\mathcal{I}=\left[-\frac{\beta\lfloor\beta\rfloor}{\beta^{2}-1}, \frac{\lfloor\beta\rfloor}{\beta^{2}-1}\right]
$$

How to get a representation

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x):=\alpha x-D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$
x=\frac{D(x)}{\alpha}+\frac{D(T(x))}{\alpha^{2}}+\frac{D\left(T^{2}(x)\right)}{\alpha^{3}}+\cdots
$$

How to get a representation

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x):=\alpha x-D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$
x=\frac{D(x)}{\alpha}+\frac{D(T(x))}{\alpha^{2}}+\frac{D\left(T^{2}(x)\right)}{\alpha^{3}}+\cdots
$$

Example (Binary representations)

Let

$$
\alpha:=2, \quad \mathcal{A}:=\{0,1\}, \quad D(x):=\lfloor 2 x\rfloor
$$

Then

$$
T(x)=2 x-\lfloor 2 x\rfloor=\{2 x\} \in[0,1) \quad \text { and } \quad[0,1) \subseteq \mathcal{I} .
$$

How to get a representation

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x):=\alpha x-D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$
x=\frac{D(x)}{\alpha}+\frac{D(T(x))}{\alpha^{2}}+\frac{D\left(T^{2}(x)\right)}{\alpha^{3}}+\cdots
$$

Example (Rényi, 1957)

Let

$$
\alpha:=\phi=\frac{1+\sqrt{5}}{2}, \quad D(x)=\lfloor\phi x\rfloor, \quad A=\{0,1\}
$$

Then

$$
T(x)=\phi x-\lfloor\phi x\rfloor=\{\phi x\} \in[0,1) \quad \text { and } \quad[0,1) \subseteq \mathcal{I}=[0, \phi] .
$$

How to get a representation

Approach ONE: Algorithm

- Give: function $D: \mathcal{I} \mapsto \mathcal{A}$.
- Restriction: $T(x):=\alpha x-D(x) \in \mathcal{I}$ for all $x \in \mathcal{I}$.
- Representation:

$$
x=\frac{D(x)}{\alpha}+\frac{D(T(x))}{\alpha^{2}}+\frac{D\left(T^{2}(x)\right)}{\alpha^{3}}+\cdots
$$

Example (Ito, Sadahiro, 2009)

Let

$$
\alpha:=-\phi, \quad \mathcal{A}=\{0,1\}, \quad D(x)=\left\lfloor-\phi x+\frac{1}{\phi}\right\rfloor
$$

Then

$$
T(x):=\left\{-\phi x+\frac{1}{\phi}\right\}-\frac{1}{\phi} \in\left[-\frac{1}{\phi}, \frac{1}{\phi^{2}}\right) \quad \text { and } \quad\left[-\frac{1}{\phi}, \frac{1}{\phi^{2}}\right) \subseteq \mathcal{I}=\left[-\frac{1}{\phi}, \frac{1}{\phi^{2}}\right) .
$$

How to get a representation

Approach TWO: Criteria

- For $x \in \mathcal{I}$ consider all $\bullet a_{1} a_{2} a_{3} \cdots \in \mathcal{A}^{\mathbb{N}}$ such that $x=\sum a_{k} \alpha^{-k}$
- This (in general) allows multiple representations of x
- Give a criterion saying which one to choose

Idea: extremal representations

Extremal representations

Definition (Lexicographical ordering)

Let $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \cdots$ and $\mathbf{b}=\bullet b_{1} b_{2} b_{3} \cdots$ be representations.
Then $\mathbf{a} \prec_{\text {lex }} \mathbf{b}$ if

$$
a_{k}<b_{k} \quad \text { for } \quad k=\min \left\{i \geq 1 \mid a_{i} \neq b_{i}\right\} .
$$

Extremal representations

Definition (Lexicographical ordering)

Let $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \cdots$ and $\mathbf{b}=\bullet b_{1} b_{2} b_{3} \cdots$ be representations.
Then $\mathbf{a} \prec_{\text {lex }} \mathbf{b}$ if

$$
a_{k}<b_{k} \quad \text { for } \quad k=\min \left\{i \geq 1 \mid a_{i} \neq b_{i}\right\} .
$$

Definition (Alternate ordering)

Let $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \ldots$ and $\mathbf{b}=\bullet b_{1} b_{2} b_{3} \cdots$ be representations. Then $\mathbf{a} \prec_{\text {alt }} \mathbf{b}$ if

$$
(-1)^{k} a_{k}<(-1)^{k} b_{k} \quad \text { for } \quad k=\min \left\{i \geq 1 \mid a_{i} \neq b_{i}\right\} .
$$

Extremal representations

Definition (Lazy and greedy representations)

Let $b>+1$ be a positive base. The maximal representation with respect to the lexicographical order is called the greedy representation, the minimal one is the lazy represetation.

Extremal representations

Definition (Lazy and greedy representations)

Let $b>+1$ be a positive base. The maximal representation with respect to the lexicographical order is called the greedy representation, the minimal one is the lazy represetation.

Let $b<-1$ be a negative base. The maximal representation with respect to the alternate order is called the greedy representation, the minimal one is the lazy represetation.

Extremal representations

Definition (Lazy and greedy representations)

Let $b>+1$ be a positive base. The maximal representation with respect to the lexicographical order is called the greedy representation, the minimal one is the lazy represetation.

Let $b<-1$ be a negative base. The maximal representation with respect to the alternate order is called the greedy representation, the minimal one is the lazy represetation.

Proposition (K. Dajani, C. Kalle, 2010)
There is no transformation (approach ONE) generating lazy and greedy representations in negative base.

How to obtain extremal representations

We suppose: $\alpha=-\beta \notin \mathbb{Z}, \quad \mathcal{A}=\{0, \ldots,\lfloor\beta\rfloor\}$
Stated in the means of algorithm by (K. Dajani, C. Kalle, 2010)

How to obtain extremal representations I

How to obtain extremal representations II

Greedy "transformation":

- use T_{m} on odd positions
- use T_{v} on even positions

How to obtain extremal representations II

Greedy "transformation":

- use T_{m} on odd positions
- use T_{v} on even positions

How to obtain extremal representations II

Greedy "transformation":

- use T_{m} on odd positions
- use T_{v} on even positions

Lazy "transformation":

- use T_{v} on odd positions
- use T_{m} on even positions

Alternation of transformations

- Symmetry between greedy and lazy case \Longrightarrow we will focus on greedy
- Define: $\quad T_{G}(x)=T_{v} T_{m}(x)$ and $\quad D_{G}=\beta^{2} x-T_{G}(x)$
- D_{G} uses digits from the alphabet $\mathcal{B}=\{-\beta b+a \mid a, b \in \mathcal{A}\}$
- T_{G} is a well-defined β^{2}-transformation with a positive base

Step-by-step how-to for greedy $(-\beta)$-representations

Three steps:

(1) Represent x using T_{G}, D_{G} in alphabet $\mathcal{B}=-\beta \mathcal{A}+\mathcal{A}$
(2) Substitution $\mathcal{B} \mapsto \mathcal{A}: \quad-\beta b+a \mapsto b a$
(3) The result is the greedy $(-\beta, \mathcal{A})$-representation or x

- Main idea:

$$
b a \prec_{\mathrm{alt}} d c \quad \Longleftrightarrow \quad-b \beta+a<-d \beta+c \quad \text { for } a, b \in \mathcal{A}
$$

Main advantage: Allows to use general knowledge of radix transformations

Admissibility conditions

- Using result from (C. Kalle, W. Steiner, 2012)

Theorem

Let $X_{1} X_{2} X_{3} \cdots \in \mathcal{B}^{\mathbb{N}}$. Then there exists $x \in[I, I+1)$ such that $d_{G}(x)=X_{1} X_{2} X_{3} \cdots$
if and only if
for every $k \geq 1$ we have $X_{k} \leq D_{G}^{*}(I+1)$ and
$X_{k+1} X_{k+2} X_{k+3} \cdots \prec_{\operatorname{lex}} \begin{cases}d_{G}^{*}\left(T_{G}^{*}(I+1)\right) & \text { if } X_{k}=D_{G}^{*}(I+1), \\ d_{G}^{*}(I+\{\beta\}) & \text { if } X_{k}=-b \beta+\lfloor\beta\rfloor<D_{G}^{*}(I+1) \\ \text { no condition } & \text { otherwise, }\end{cases}$ where d_{G}^{*} and T_{G}^{*} are left-continuous modifications of d_{G} and T_{G}.

Forbidden strings

For some β, we can get forbidden strings.

Corollary

String $\bullet a_{1} a_{2} a_{3} \cdots$ over $\mathcal{A}=\{0,1\}$ is a greedy representation in base $-\phi$ if and only if
(1) none of $1^{2 k} 0$ nor $0^{2 k-1} 1$ is its prefix;
(2) none of 0^{ω} nor 1^{ω} is its infinite suffix;
(3) none of $10^{2 k} 1$ nor $01^{2 k} 0$ is its factor.

Unique representations

- x has a unique representation $\Longleftrightarrow d_{G}(x)=d_{L}(x)$

Theorem (K. Dajani, C. Kalle, 2010)

The numbers with unique $(-\beta)$-representation are of Lebesgue measure zero, for all $\beta>1$. There are only two such points for all $\beta \leq \phi$.

Unique representations

- x has a unique representation $\Longleftrightarrow d_{G}(x)=d_{L}(x)$

Theorem (K. Dajani, C. Kalle, 2010)

The numbers with unique $(-\beta)$-representation are of Lebesgue measure zero, for all $\beta>1$. There are only two such points for all $\beta \leq \phi$.

Proposition

Let $\mu=1.839 \cdots$ be the 'Tribonacci constant', root of $x^{3}-x^{2}-x-1$. Then all strings over the pairs of digits $\{01,10\}$ are admissible as both greedy and lazy ($-\mu$)-represenations.

Unique representations

- x has a unique representation $\Longleftrightarrow d_{G}(x)=d_{L}(x)$

Theorem (K. Dajani, C. Kalle, 2010)

The numbers with unique $(-\beta)$-representation are of Lebesgue measure zero, for all $\beta>1$. There are only two such points for all $\beta \leq \phi$.

Proposition

Let $\mu=1.839 \cdots$ be the 'Tribonacci constant', root of $x^{3}-x^{2}-x-1$. Then all strings over the pairs of digits $\{01,10\}$ are admissible as both greedy and lazy ($-\mu$)-represenations.

Theorem

Let $\beta>1+\sqrt{3}=2.732$. Then there are uncountably many numbers with unique $(-\beta)$-representations over the alphabet $\{0, \ldots,\lfloor\beta\rfloor\}$.

Optimal representations

- Another "extremal" representation

Definition (C. Dajani, M. de Vries, V. Komornik, P. Loreti, 2011)

String $\bullet a_{1} a_{2} a_{3} \cdots \in \mathcal{A}^{\mathbb{N}}$ is optimal (α, \mathcal{A})-representation if

$$
\left|x-\sum_{k=1}^{n} \frac{a_{k}}{\alpha^{k}}\right| \leq\left|x-\sum_{k=1}^{n} \frac{b_{k}}{\alpha^{k}}\right|
$$

for each $n \geq 1$ and each $\bullet b_{1} b_{2} b_{3} \cdots \in \mathcal{A}^{\mathbb{N}}$.

- $\mathrm{D}+\mathrm{dV}+\mathrm{K}+\mathrm{L}$ study for $\alpha>1$
- Properties for $\alpha<-1$ and $\alpha \in \mathbb{C}$?

Conclusions

- Stating the algorithm for greedy and lazy in the means of transformations
- Lexicographic admissibility conditions
- Results on unique representations

Open problems:

- Dynamical properties (ergodicity, exactness, invariant measures, ...)
- Full description of unique representations
- Optimal representations

References

(1) K. Dajani, C. Kalle. Transformations generating negative β-expansions. (2010)
(2) K. Dajani, M. de Vries, V. Komornik, P. Loreti. Optimal expansions in non-integer bases. 2011
(3) S. Ito, T. Sadahiro. Beta-expansions with negative bases. 2009
(9) C. Kalle, W. Steiner. Beta-expansions, natural extensions and multiple tilings associated with Pisot units. 2010
(5) M. Pedicini. Greedy expansions and sets with deleted digits. 2005
(0) A. Rényi. Representations for real numbers and their ergodic properties. 1957

