Gaps in Ito-Sadahiro transformation ... and more ...

Tomáš Hejda

TIGR FNSPE

Svatý Ján pod Skalou

Dynamical system

We need:

- topological space X, e.g. an interval
- transformation on X, a map $X \mapsto X$
- (T, X) is dynamical system if
 - either T is continuous on X
 - 2 or there exist a measure μ on X that is T-invariant

Example (Doubling map)

- space *X* = [0, 1)
 - transformation $T(x) = 2x \mod 1 = 2x \lfloor 2x \rfloor$
 - it is continuous (after some simple modification)

Measures

Measure on X is (for us) μ : (Borel sets in X) $\mapsto \mathbb{R}$ such that:

$${f 0}\ \mu(A\cup B)=\mu(A)+\mu(B)-\mu(A\cap B)$$
 for all Borel $A,B\subseteq X$

Example (Doubling map)

B $T^{-1}(I_{p})$

- transformation $T(x) = 2x \mod 1 = 2x \lfloor 2x \rfloor$
- the invariant measure is $\mu(B) = \int_B 1 \, \mathrm{d} x$

Invariant measures

Measure μ is *T*-invariant if

$$\mu(B) = \mu(T^{-1}(B))$$
 for all B Borel

Example $(+\phi \text{ transformation})$

- space X = [0, 1)
- transformation $T(x) = \phi x \lfloor \phi x \rfloor$
- not continuous
- invariant measure is $\mu(B) = \int_B h(x) \, dx$

Invariant measures

Measure μ is *T*-invariant if

$$\mu(B) = \mu(T^{-1}(B))$$
 for all B Borel

Example (+ ϕ transformation)

- space X = [0, 1)
- transformation $T(x) = \phi x \lfloor \phi x \rfloor$
- not continuous
- invariant measure is $\mu(B) = \int_B h(x) \, dx$

Minus-beta transformation

Ito-Sadahiro definition:

- interval $J = [\ell_{\beta}, r_{\beta}) = \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$
- transformation $T(x) = -\beta x \lfloor -\beta x \ell_{\beta} \rfloor$
- digit function $D(x) = \lfloor -\beta x \ell_{\beta} \rfloor \in \{0, \dots, \lfloor \beta \rfloor\}$
- Ito-Sadahiro expansion of $x\in J$ is d(x)=0 $d_1d_2d_3\cdots$ where

$$d_n = D(T^{n-1}(x))$$
 and we get $x = \frac{d_1}{(-\beta)^1} + \frac{d_2}{(-\beta)^2} + \frac{d_3}{(-\beta)^3} + \cdots$

Minus-beta transformation

Ito-Sadahiro definition:

- interval $J = [\ell_{\beta}, r_{\beta}) = \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}\right)$
- transformation $T(x) = -\beta x \lfloor -\beta x \ell_{\beta} \rfloor$
- digit function $D(x) = \lfloor -\beta x \ell_{\beta} \rfloor \in \{0, \dots, \lfloor \beta \rfloor\}$
- Ito-Sadahiro expansion of $x\in J$ is d(x)=0 $d_1d_2d_3\cdots$ where

Theorem (Ito & Sadahiro, 2009)

Let $-\beta < -1$. Define $h: I \mapsto \mathbb{R}$ as

$$h(x) = \sum_{\substack{n \ge 0 \\ x \ge T^n(\ell_\beta)}} \frac{1}{(-\beta)^n}.$$

Then the measure $\mu(B) = \int_B h(x) dx$ is T-invariant measure.

Proof.

• let $d(\ell) = 0 \bullet b_1 b_2 b_3 \cdots$

Proof.

• let
$$d(\ell) = 0 \cdot b_1 b_2 b_3 \cdots$$

• it suffices to show that $(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$

Proof.

It
$$d(\ell) = 0 \bullet b_1 b_2 b_3 \cdots$$
It suffices to show that $(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$
It $d_n(x) = \begin{cases} 1 & \text{if } x \geq T^n(\ell) \\ 0 & \text{if } x < T^n(\ell) \end{cases}$

Proof.

It
$$d(\ell) = 0 \bullet b_1 b_2 b_3 \cdots$$
It suffices to show that $(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$
It $d_n(x) = \begin{cases} 1 & \text{if } x \ge T^n(\ell) \\ 0 & \text{if } x < T^n(\ell) \end{cases}$
We have $\sum_{y \in T^{-1}(x)} = b_{n+1} + 1 - d_{n+1}(x)$

)

Proof.

a let
$$d(\ell) = 0 \bullet b_1 b_2 b_3 \cdots$$
a it suffices to show that $(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$
a let $d_n(x) = \begin{cases} 1 & \text{if } x \ge T^n(\ell) \\ 0 & \text{if } x < T^n(\ell) \end{cases}$
a we have $\sum_{y \in T^{-1}(x)} = b_{n+1} + 1 - d_{n+1}(x)$
a finally $h(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$

Proof.

It
$$d(\ell) = 0 \cdot b_1 b_2 b_3 \cdots$$
It suffices to show that $(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$
It $d_n(x) = \begin{cases} 1 & \text{if } x \ge T^n(\ell) \\ 0 & \text{if } x < T^n(\ell) \end{cases}$
We have $\sum_{y \in T^{-1}(x)} = b_{n+1} + 1 - d_{n+1}(x)$
It finally $h(x) = \frac{1}{\beta} \sum_{y \in T^{-1}(x)} h(y)$
Q.E.D.

1st example of "gaps"

Example

 $\beta=1.1347241384,$ root of $X^6-X-1=0,$ let $s_i=T^i(\ell).$ Then $s_i+3=s_i$ for all $i\geq 5$

	$s_0 \sim$	$s_5 \sim$	$s_3 \sim$	$s_4 \sim$	$s_6 \sim$	$s_1 \sim$	$s_2 \sim$	$s_7 \sim$
1				\checkmark	\checkmark		\checkmark	
$-\frac{1}{\beta}$							\checkmark	\checkmark
$\frac{1}{\beta^2}$								\checkmark
$-\frac{1}{\beta^3}$			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
$\frac{1}{\beta^4}$				\checkmark	\checkmark		\checkmark	\checkmark
$-\frac{1}{\beta^5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\frac{1}{\beta^6}$					\checkmark		\checkmark	\checkmark
$-\frac{2}{\beta^7}$								\checkmark
$\frac{\beta}{\beta^8}$			\checkmark		\checkmark		\checkmark	\checkmark
:	:	:	:	:	:	:	:	:
•	•	·	•	·	·	•	•	•
h_{-eta}	1	$\frac{1}{\beta^3}$	0	$\frac{1}{\beta^4}$	$\frac{1}{\beta}$	0	$\frac{1}{\beta^2}$	$\frac{1}{\beta^5}$

2nd example of "gaps", $\beta = 5/4$

3rd example of "gaps", $\beta = 9/8$

Topological properties of transformations

- locally eventually onto if for any non-empty open subset U ⊆ X there exists k ≥ 0 such that T^k(U) = X
- exact on a probabilistic space if $\lim_{n\to\infty} \mu(T^n(A)) = \mu(X)$ for all A with $\mu(A) > 0$
- I.e.o. \implies exact

Definition

Let
$$\gamma_n > 1$$
 be a root of $X^{g_n+1} - X - 1 = 0$ with $g_n = \lfloor 2^{n+1}/3 \rfloor$.

Definition

For
$$m, k, \beta$$
, let

$$G_{m,k}(\beta) = \begin{cases} (T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell), T_{-\beta}^{2^{m+1}+k}(\ell)) & \text{if } k \text{ is even} \\ (T_{-\beta}^{2^{m+1}+k}(\ell), T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell)) & \text{if } k \text{ is odd} \end{cases}$$

Definition

For β , n, let $\mathcal{G}_n(\beta) = \left\{ \mathcal{G}_{m,k}(\beta) \middle| 0 \le m < n, 0 \le k < \frac{2^{m+1} + (-1)^m}{3} \right\}$

Theorem

Let $\gamma_{n+1} \leq \beta < \gamma_n$. Then the transformation $T_{-\beta}$ has exactly g_n gaps, they are the intervals in $\mathcal{G}_n(\beta)$

Definition

Let
$$\gamma_n > 1$$
 be a root of $X^{g_n+1} - X - 1 = 0$ with $g_n = \lfloor 2^{n+1}/3 \rfloor$.

Definition

For
$$m, k, \beta$$
, let

$$G_{m,k}(\beta) = \begin{cases} \left(T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell), T_{-\beta}^{2^{m+1}+k}(\ell)\right) & \text{if } k \text{ is even} \\ \left(T_{-\beta}^{2^{m+1}+k}(\ell), T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell)\right) & \text{if } k \text{ is odd} \end{cases}$$

Definition

For β, n , let $\mathcal{G}_n(\beta) = \left\{ \left. \mathcal{G}_{m,k}(\beta) \right| 0 \le m < n, 0 \le k < rac{2^{m+1} + (-1)^m}{3}
ight\}$

Theorem

Let $\gamma_{n+1} \leq \beta < \gamma_n$. Then the transformation $T_{-\beta}$ has exactly g_n gaps, they are the intervals in $\mathcal{G}_n(\beta)$

Definition

Let
$$\gamma_n > 1$$
 be a root of $X^{g_n+1} - X - 1 = 0$ with $g_n = \lfloor 2^{n+1}/3 \rfloor$.

Definition

For
$$m, k, \beta$$
, let

$$G_{m,k}(\beta) = \begin{cases} \left(T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell), T_{-\beta}^{2^{m+1}+k}(\ell)\right) & \text{if } k \text{ is even} \\ \left(T_{-\beta}^{2^{m+1}+k}(\ell), T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell)\right) & \text{if } k \text{ is odd} \end{cases}$$

Definition

For
$$\beta$$
, n , let $\mathcal{G}_n(\beta) = \left\{ \left. \mathcal{G}_{m,k}(\beta) \right| 0 \le m < n, 0 \le k < \frac{2^{m+1} + (-1)^m}{3} \right\}$

Theorem

Let $\gamma_{n+1} \leq \beta < \gamma_n$. Then the transformation $T_{-\beta}$ has exactly g_n gaps, they are the intervals in $\mathcal{G}_n(\beta)$

Definition

Let
$$\gamma_n > 1$$
 be a root of $X^{g_n+1} - X - 1 = 0$ with $g_n = \lfloor 2^{n+1}/3 \rfloor$.

Definition

For
$$m, k, \beta$$
, let

$$G_{m,k}(\beta) = \begin{cases} \left(T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell), T_{-\beta}^{2^{m+1}+k}(\ell)\right) & \text{if } k \text{ is even} \\ \left(T_{-\beta}^{2^{m+1}+k}(\ell), T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(\ell)\right) & \text{if } k \text{ is odd} \end{cases}$$

Definition

For
$$\beta, n$$
, let $\mathcal{G}_n(\beta) = \left\{ \left. \mathcal{G}_{m,k}(\beta) \right| 0 \le m < n, 0 \le k < rac{2^{m+1} + (-1)^m}{3} \right\}$

Theorem

Let $\gamma_{n+1} \leq \beta < \gamma_n$. Then the transformation $T_{-\beta}$ has exactly g_n gaps, they are the intervals in $\mathcal{G}_n(\beta)$

Liao, Steiner — results on transformations

Theorem

For any $\beta > 1$ the transformation T is locally eventually onto on $[\ell, \ell+1) \setminus G(\beta)$, where $G(\beta) = \bigcup_{I \in \mathcal{G}_n(\beta)} I$

Theorem (Góra proved this for $eta > \gamma_2$).

For any $\beta > 1$ the transformation T is exact with respect to its unique absolutely continuous invariant measure.

Fheorem (Faller proved this for $eta>2^{1/3})$

For any eta>1 the transformation T has a unique maximal entropy measure, hence is intrinsic.

Liao, Steiner — results on transformations

Theorem

For any $\beta > 1$ the transformation T is locally eventually onto on $[\ell, \ell+1) \setminus G(\beta)$, where $G(\beta) = \bigcup_{l \in \mathcal{G}_n(\beta)} l$

Theorem (Góra proved this for $eta > \gamma_2)$

For any $\beta > 1$ the transformation T is exact with respect to its unique absolutely continuous invariant measure.

Theorem (Faller proved this for $eta>2^{1/3}$

For any $\beta > 1$ the transformation T has a unique maximal entropy measure, hence is intrinsic.

Liao, Steiner — results on transformations

Theorem

For any $\beta > 1$ the transformation T is locally eventually onto on $[\ell, \ell+1) \setminus G(\beta)$, where $G(\beta) = \bigcup_{l \in \mathcal{G}_n(\beta)} l$

Theorem (Góra proved this for $eta > \gamma_2)$

For any $\beta > 1$ the transformation T is exact with respect to its unique absolutely continuous invariant measure.

Theorem (Faller proved this for $\beta > 2^{1/3}$)

For any $\beta > 1$ the transformation T has a unique maximal entropy measure, hence is intrinsic.

Liao, Steiner — results on expansion of ℓ

Theorem (Masáková and Pelantová proved this for $\beta \geq 2$)

Every Yrrap number is a Perron number.

β > 1 is Yrrap if d(ℓ) is eventually periodic
β > 1 is Perron if all its conjugates β' satisfy |β'| < β

Theorem

The expansion of ℓ in the base γ_{n} is

 $d(\ell)=arphi^{n-1}(10^{\omega}), \qquad ext{where} \qquad arphi: egin{array}{cc} 0 &\mapsto 1 \ 1 &\mapsto 100 \end{array}.$

The expansion of ℓ in the base $1 < eta \leq \gamma_n$ starts with $arphi^n(1),$ hence

 $d(\ell) \stackrel{eta
ightarrow 1}{\longrightarrow} arphi^{\omega}(1) = 100111001001001110011 \cdots$

Liao, Steiner — results on expansion of ℓ

Theorem (Masáková and Pelantová proved this for $\beta \geq 2$)

Every Yrrap number is a Perron number.

- eta > 1 is Yrrap if $d(\ell)$ is eventually periodic
- $\beta>1$ is Perron if all its conjugates β' satisfy $|\beta'|<\beta$

Theorem

The expansion of ℓ in the base γ_{n} is

 $d(\ell) = \varphi^{n-1}(10^{\omega}), \quad \text{where} \quad \varphi: \begin{array}{c} 0 \mapsto 1 \\ 1 \mapsto 100 \end{array}.$

The expansion of ℓ in the base $1 < eta \leq \gamma_{\mathsf{n}}$ starts with $arphi^{\mathsf{n}}(1)$, hence

 $d(\ell) \stackrel{eta
ightarrow 1}{\longrightarrow} arphi^{\omega}(1) = 100111001001001110011 \cdots$

Liao, Steiner — results on expansion of ℓ

Theorem (Masáková and Pelantová proved this for $\beta \geq 2$)

Every Yrrap number is a Perron number.

- eta > 1 is Yrrap if $d(\ell)$ is eventually periodic
- $\bullet \ \beta > 1$ is Perron if all its conjugates β' satisfy $|\beta'| < \beta$

Theorem

The expansion of ℓ in the base γ_n is

$$d(\ell) = arphi^{n-1}(10^{\omega}), \qquad ext{where} \qquad arphi: egin{array}{c} 0 \mapsto 1 \ 1 \mapsto 100 \end{array}.$$

The expansion of ℓ in the base $1 < \beta \leq \gamma_n$ starts with $\varphi^n(1)$, hence

$$d(\ell) \stackrel{\beta o 1}{\longrightarrow} \varphi^{\omega}(1) = 100111001001001110011 \cdots$$

• let
$$f_a: x \mapsto -\beta x + \alpha$$

• let
$$f_{a_1\cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$$

• we have $f_{a_1\cdots a_k}(1) = (-\beta)^{\kappa} + \sum_{j=1}^{\kappa} a_j (-\beta)^{\kappa-j}$

• let
$$P_{a_1...a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$$

• we have
$$f_{a_1\cdots a_k}(1)=P_{a_1\cdots a_k}(\beta)$$

•
$$P_{a_1\ldots a_k} = P_{b_1\ldots b_l}$$
 iff $a_1\ldots a_k = b_1\ldots b_l$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}.$$

Lemma

For every $n \ge 0$ we have

$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a: x \mapsto -\beta x + \alpha$$

• let
$$f_{a_1\cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$$

• we have
$$f_{a_1\cdots a_k}(1)=(-eta)^k+\sum_{j=1}^{\kappa}a_j(-eta)^{k-j}$$

• let
$$P_{a_1...a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$$

• we have
$$f_{a_1\cdots a_k}(1)=P_{a_1\ldots a_k}(eta)$$

•
$$P_{a_1...a_k} = P_{b_1...b_l}$$
 iff $a_1...a_k = b_1...b_l$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}.$$

Lemma

For every $n \ge 0$ we have

$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a: x \mapsto -\beta x + \alpha$$

• let $f_{a_1 \cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$
• we have $f_{a_1 \cdots a_k}(1) = (-\beta)^k + \sum_{j=1}^k a_j (-\beta)^{k-j}$
• let $P_{a_1 \cdots a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$
• we have $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$
• $P_{a_1 \cdots a_k} = P_{b_1 \cdots b_k}$ iff $a_1 \cdots a_k = b_1 \cdots b_k$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}.$$

Lemma

For every $n \ge 0$ we have

$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a : x \mapsto -\beta x + \alpha$$

• let $f_{a_1 \cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$
• we have $f_{a_1 \cdots a_k}(1) = (-\beta)^k + \sum_{j=1}^k a_j (-\beta)^{k-j}$
• let $P_{a_1 \cdots a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$
• we have $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$
• Prove $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}.$$

Lemma

For every $n \ge 0$ we have

$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a: x \mapsto -\beta x + \alpha$$

• let $f_{a_1 \cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$
• we have $f_{a_1 \cdots a_k}(1) = (-\beta)^k + \sum_{j=1}^k a_j (-\beta)^{k-j}$
• let $P_{a_1 \cdots a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$
• we have $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$
• $P_{a_1 \cdots a_k} = P_{b_1 \cdots b_k}$ iff $a_1 \cdots a_k = b_1 \cdots b_k$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}.$$

Lemma

For every $n \ge 0$ we have

$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a : x \mapsto -\beta x + \alpha$$

• let $f_{a_1 \cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$
• we have $f_{a_1 \cdots a_k}(1) = (-\beta)^k + \sum_{j=1}^k a_j (-\beta)^{k-j}$
• let $P_{a_1 \cdots a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$
• we have $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$
• $P_{a_1 \cdots a_k} = P_{b_1 \cdots b_l}$ iff $a_1 \cdots a_k = b_1 \cdots b_l$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}.$$

Lemma

For every $n \ge 0$ we have

$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a : x \mapsto -\beta x + \alpha$$

• let $f_{a_1 \cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$
• we have $f_{a_1 \cdots a_k}(1) = (-\beta)^k + \sum_{j=1}^k a_j (-\beta)^{k-j}$
• let $P_{a_1 \cdots a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$
• we have $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$
• $P_{a_1 \cdots a_k} = P_{b_1 \cdots b_l}$ iff $a_1 \cdots a_k = b_1 \cdots b_l$

Lemma

For every $n \ge 0$ we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}$$

Lemma

For every $n \ge 0$ we have

 $|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$ and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

• let
$$f_a : x \mapsto -\beta x + \alpha$$

• let $f_{a_1 \cdots a_k} = f_{a_k} \circ \cdots \circ f_{a_1}$
• we have $f_{a_1 \cdots a_k}(1) = (-\beta)^k + \sum_{j=1}^k a_j (-\beta)^{k-j}$
• let $P_{a_1 \cdots a_k} = (-X)^k + \sum_{j=1}^k a_j (-X)^{k-j}$
• we have $f_{a_1 \cdots a_k}(1) = P_{a_1 \cdots a_k}(\beta)$
• $P_{a_1 \cdots a_k} = P_{b_1 \cdots b_l}$ iff $a_1 \cdots a_k = b_1 \cdots b_l$

Lemma

For every
$$n \ge 0$$
 we have

$$X^{\frac{1+(-1)^n}{2}}P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}}P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}$$

Lemma

For every $n \ge 0$ we have

$$|\varphi^n(2)| = g_{n+1} + \frac{1-(-1)^n}{2}$$
 and $|\varphi^n(11)| = g_{n+1} + \frac{1+(-1)^n}{2}$.

Lemma

For every $n \ge 0$ the words $\varphi^n(2)$ and $\varphi^n(11)$ agree on the first $g_{n+1} - 1$ letters and differ on the g_{n+1} -st letter.

Proof.

Q.E.D.

References

- Lingmin Liao, Wolfgang Steiner: Dynamical properties of the negative beta-transformation
- **2** Shunji Ito, Taizo Sadahiro: **Beta-expansions with negative digits**
- ② Zuzana Masáková, Edita Pelantová: Ito-Sadahiro numbers vs. Parry numbers
- **9** Paweł Góra: Invariant densities for generalized β-maps
- Sastien Faller: Contribution to the ergodic theory of piecewise monotone continuous maps