Greedy and lazy expansions in the negative base

Tom Hejda, Zuzana Masáková and Edita Pelantová tohecz@gmail.com
Doppler Institute \& Department of Mathematics, FNSPE, Czech Technical University in Prague

First Russian-Finnish Symposium on Discrete Mathematics
2011, September 21-24

Numeration systems

Numeration system is a system of representations of (some) real numbers.

We consider:

- real case;
- base $\beta \in \mathbb{R}$ with $|\beta|>1$;
- real numbers from some finite interval.

Definition

String $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \ldots$ represents $x \in \mathbb{R}$ in the base β, if

$$
x=\frac{a_{1}}{\beta}+\frac{a_{2}}{\beta^{2}}+\frac{a_{3}}{\beta^{3}}+\cdots
$$

Terminology: representation (any string) vs. expansion (algorithm).

Numeration systems - classical approach for the base b

Give:

- an interval \mathcal{I};
- a transformation $T: \mathcal{I} \mapsto \mathcal{I}$.

Compute:

- the digit function $D(x):=\beta x-T(x)$;
- the alphabet of digits $\mathcal{A}:=D(\mathcal{I})$

Restriction: The alphabet is finite.

Numeration systems - classical approach for the base b

Give:

- an interval \mathcal{I};
- a transformation $T: \mathcal{I} \mapsto \mathcal{I}$.

Compute:

- the digit function $D(x):=\beta x-T(x)$;
- the alphabet of digits $\mathcal{A}:=D(\mathcal{I})$

Restriction: The alphabet is finite.

Example (Binary representations)

Let

$$
\beta:=2, \quad \mathcal{I}:=[0,1), \quad T(x):=\{2 x\}
$$

Then

$$
D(x)=2 x-\{2 x\}=\lfloor 2 x\rfloor \quad \text { and } \quad \mathcal{A}=\{0,1\} .
$$

Numeration systems - classical approach for the base b

Give:

- an interval \mathcal{I};
- a transformation $T: \mathcal{I} \mapsto \mathcal{I}$.

Compute:

- the digit function $D(x):=\beta x-T(x)$;
- the alphabet of digits $\mathcal{A}:=D(\mathcal{I})$

Restriction: The alphabet is finite.
Example (Rényi representations in the golden mean base)
Let

$$
\beta:=\phi=\frac{1+\sqrt{5}}{2}, \quad \mathcal{I}:=[0,1), \quad T(x):=\{\phi x\}
$$

Then

$$
D(x)=\phi x-\{\phi x\}=\lfloor\phi x\rfloor \quad \text { and } \quad \mathcal{A}=\{0,1\} .
$$

Numeration systems - classical approach for the base b
Give:

- an interval \mathcal{I};
- a transformation $T: \mathcal{I} \mapsto \mathcal{I}$.

Compute:

- the digit function $D(x):=\beta x-T(x)$;
- the alphabet of digits $\mathcal{A}:=D(\mathcal{I})$

Restriction: The alphabet is finite.
Example (Ito-Sadahiro representations in the minus golden mean base)
Let

$$
\beta:=-\phi, \quad \mathcal{I}:=\left[-\frac{1}{\phi}, \frac{1}{\phi^{2}}\right), \quad T(x):=\left\{-\phi x+\frac{1}{\phi}\right\}-\frac{1}{\phi}
$$

Then

$$
D(x)=\left\lfloor-\phi x+\frac{1}{\phi}\right\rfloor \quad \text { and } \quad \mathcal{A}=\{0,1\} .
$$

Numeration systems - our approach

Give:

- a base β with $|\beta|>1$;
- an alphabet $\mathcal{A} \subseteq \mathbb{R}$ (not necessarily integer);
- some condition \mathbf{C} on the representations.

Compute:

- the maximal interval $\mathcal{I}=\left\{\sum_{i=1}^{\infty} a_{i} \beta^{-i} \mid a_{i} \in \mathcal{A}\right\}$;
- the algorithm to obtain the representation $(x)_{\beta, \mathcal{A}, \mathbf{C}}=\bullet a_{1} a_{2} a_{3} \ldots$, let us call it "iterating a transformation"
Restriction:
- condition C is "nice";
- the iteration of the "transformation" stays in \mathcal{I}.

Extremal representations

Definition (Lexicographical ordering)
Let $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \ldots$ and $\mathbf{b}=\bullet b_{1} b_{2} b_{3}$ be representations. Then $\mathbf{a} \prec_{\text {lex }} \mathbf{b}$ if

$$
a_{k}<b_{k} \quad \text { for } \quad k=\min \left\{i \geq 1 \mid a_{i} \neq b_{i}\right\}
$$

Extremal representations

Definition (Lexicographical ordering)
Let $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \ldots$ and $\mathbf{b}=\bullet b_{1} b_{2} b_{3}$ be representations. Then $\mathbf{a} \prec_{\text {lex }} \mathbf{b}$ if

$$
a_{k}<b_{k} \quad \text { for } \quad k=\min \left\{i \geq 1 \mid a_{i} \neq b_{i}\right\}
$$

Definition (Alternate ordering)

Let $\mathbf{a}=\bullet a_{1} a_{2} a_{3} \ldots$ and $\mathbf{b}=\bullet b_{1} b_{2} b_{3}$ be representations. Then $\mathbf{a} \prec_{\text {alt }} \mathbf{b}$ if

$$
(-1)^{k} a_{k}<(-1)^{k} b_{k} \quad \text { for } \quad k=\min \left\{i \geq 1 \mid a_{i} \neq b_{i}\right\}
$$

Idea for the condition \mathbf{C} : Let us take extremal representations.

Extremal representations

Idea for the condition \mathbf{C} : Let us take extremal representations.
Definition (Lazy and greedy representations)
Let $b>+1$ be a positive base. The maximal representation with respect to the lexicographical order is called the greedy representation, the minimal one is the lazy represetation.

Extremal representations

Idea for the condition \mathbf{C} : Let us take extremal representations.
Definition (Lazy and greedy representations)
Let $b>+1$ be a positive base. The maximal representation with respect to the lexicographical order is called the greedy representation, the minimal one is the lazy represetation.

Let $b<-1$ be a negative base. The maximal representation with respect to the alternate order is called the greedy representation, the minimal one is the lazy represetation.

Idea for condition \mathbf{C} - positive base

Consider the base $\beta=+\phi$ and the alphabet $\mathcal{A}=\{0,1\}$. Then $\mathcal{I}=[0, \phi]$. The number $\frac{1}{2} \in \mathcal{I}$ has representations:

Representation	condition C	representation of $\frac{1}{2}$
Rényi	take maximal digit	$\left(\frac{1}{2}\right)_{R}=\bullet 0(100)^{\omega}=\bullet 0100100100 \ldots$
	in $\mathcal{I}_{R}=[0,1)$	
Greedy	take lex. maximal	$\left(\frac{1}{2}\right)_{G}=\bullet 0(100)^{\omega}=\bullet 0100100100 \ldots$
Lazy	taky lex. minimal	$\left(\frac{1}{2}\right)_{L}=\bullet 0(011)^{\omega}=\bullet 0011011011 \ldots$

Minimal polynomial of ϕ is $x^{2}=x+1$, hence $100 \leftrightarrow 011$.

Idea for condition \mathbf{C} - negative base

Consider the base $b=-\phi$ and the alphabet $\mathcal{A}=\{0,1\}$. Then $\mathcal{I}=\left[-1, \frac{1}{\phi}\right]$. The number $\frac{1}{2} \in \mathcal{I}$ has representations:

Representation	condition C	representation of $\frac{1}{2}$
lto- Sadahiro	take maximal digit in $\mathcal{I}_{I S}=\left[-\frac{1}{\phi}, \frac{1}{\phi^{2}}\right)$	$\left(\frac{1}{2}\right)_{I S}=\bullet(100)^{\omega}=\bullet \bullet 100100100 \ldots$
Greedy	take alt. maximal	$\left(\frac{1}{2}\right)_{G}=\bullet 100(111000)^{\omega}=\bullet 100111000 \ldots$
Lazy	taky alt. minimal	$\left(\frac{1}{2}\right)_{L}=\bullet(111000)^{\omega}=\bullet 111000111 \ldots$

Minimal polynomial of ϕ is $x^{2}-x=1$, hence $110 \leftrightarrow 001$.

Extremal representations in a positive base

Representations in a negative base I

Representations in a negative base II

Transformation T_{0} prefers digit 0

Transformation T_{1} prefers digit 1

Representations in a negative base III

Greedy "transformation":

- use T_{0} on odd positions
- use T_{1} on even positions

Representations in a negative base III

Greedy "transformation":

- use T_{0} on odd positions
- use T_{1} on even positions

Representations in a negative base III

Greedy "transformation":

- use T_{0} on odd positions
- use T_{1} on even positions

Lazy "transformation":

- use T_{1} on odd positions
- use T_{0} on even positions

Properties of $-\phi$ representations

Ito-Sadahiro:

- the attractor $\mathcal{I}_{I S}=\left[-\phi^{-1}, \phi^{-2}\right)$ satisfies $\frac{1}{-\phi} \mathcal{I}_{I S} \subseteq \mathcal{I}_{I S}$;
- not lazy nor greedy for any $x \in \mathcal{I}_{1 S}$;
- (0) $)_{I S}=\bullet 0^{\omega}=\bullet 0000000000 \cdots$

Greedy representations:

- the attractor $\mathcal{I}_{G}=[-1,0)$ is whole negative and $0 \notin \mathcal{I}_{G}$;
- which means that the representations are not continuous in 0 ;
- $(0)_{G}=\bullet 01(10)^{\omega}=\bullet 0110101010 \cdots$

Lazy representations:

- the attractor $\mathcal{I}_{L}=\left(-\phi^{-2}, \phi^{-1}\right]$ contains 0 as an interior point;
- but $\frac{1}{-\phi} \mathcal{I}_{L} \nsubseteq \mathcal{I}_{L}$;
- $(0)_{L}=\bullet 11(01)^{\omega}=\bullet 1101010101 \cdots$

Connection between bases $-\phi$ and $\phi^{2} \mid$

Besides a base $-\phi$ and an alphabet $\mathcal{A}:=\{0,1\}$, consider a base ϕ^{2} and an alphabet $\mathcal{B}:=\{-\phi,-\phi+1,0,1\}$.
Let us define a substituion $\psi: \mathcal{B}^{\mathbb{N}} \mapsto(\mathcal{A} \times \mathcal{A})^{\mathbb{N}}$ as

$$
\psi(-\phi)=10, \quad \psi(-\phi+1)=11, \quad \psi(0)=00, \quad \psi(1)=01 .
$$

Connection between bases $-\phi$ and $\phi^{2} \mid$

Besides a base $-\phi$ and an alphabet $\mathcal{A}:=\{0,1\}$, consider a base ϕ^{2} and an alphabet $\mathcal{B}:=\{-\phi,-\phi+1,0,1\}$.
Let us define a substituion $\psi: \mathcal{B}^{\mathbb{N}} \mapsto(\mathcal{A} \times \mathcal{A})^{\mathbb{N}}$ as

$$
\psi(-\phi)=10, \quad \psi(-\phi+1)=11, \quad \psi(0)=00, \quad \psi(1)=01
$$

We see that

$$
\frac{-\phi}{\phi^{2}}=\frac{1}{(-\phi)^{1}}+\frac{0}{(-\phi)^{2}}, \quad \frac{-\phi+1}{\phi^{2}}=\frac{1}{(-\phi)^{1}}+\frac{1}{(-\phi)^{2}}
$$

etc.

Connection between bases $-\phi$ and $\phi^{2} \mid$

Besides a base $-\phi$ and an alphabet $\mathcal{A}:=\{0,1\}$, consider a base ϕ^{2} and an alphabet $\mathcal{B}:=\{-\phi,-\phi+1,0,1\}$.
Let us define a substituion $\psi: \mathcal{B}^{\mathbb{N}} \mapsto(\mathcal{A} \times \mathcal{A})^{\mathbb{N}}$ as

$$
\psi(-\phi)=10, \quad \psi(-\phi+1)=11, \quad \psi(0)=00, \quad \psi(1)=01
$$

We see that

$$
\frac{-\phi}{\phi^{2}}=\frac{1}{(-\phi)^{1}}+\frac{0}{(-\phi)^{2}}, \quad \frac{-\phi+1}{\phi^{2}}=\frac{1}{(-\phi)^{1}}+\frac{1}{(-\phi)^{2}}
$$

etc.

Proposition

Let $\mathbf{b}=b_{1} b_{2} b_{3}$ be a representation of $x \in \mathbb{R}$ in the base ϕ^{2} with the alphabet \mathcal{B}. Then

$$
\psi(\mathbf{b})=\psi\left(b_{1}\right) \psi\left(b_{2}\right) \psi\left(b_{3}\right) \cdots
$$

is a representation of the same x in the base $-\phi$ with the alphabet \mathcal{A}.

Connection between bases $-\phi$ and ϕ^{2} II

Ito-Sadahiro uses all digits from \mathcal{B}

Greedy

Lazy

Conclusions and remarks

(1) We show how to obtain lazy and greedy representations in negative bases.
(2) The results can be generalized for any negative base $\beta<-1$.
(3) The negative bases can be studied through positive bases using non-integer alphabets.
(1) This is true as well for complex bases β with $|\beta|>1$ as far as $\arg \beta \in \pi \mathbb{Q}$.

Most important references

(1) HeMaPe. Greedy and lazy representations of numbers in the negative golden ratio base. Preprint 2011.
(2) Shunji Ito and Taizo Sadahiro. Beta-expansions with negative bases. Integers, 9:A22, 239-259, 2009.
(3) Alfréd Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar, 8:477-493, 1957.

