Möbius number systems with discrete groups

Tom Hejda,
tohecz@gmail.com

TIGR, FNSPE, Czech Technical University in Prague
Supervisor: Prof. Petr Kürka, CTS, ASCR \& Charles University
March 29, 2011

Abstract

We study number systems generated by Möbius transformations (MT) of the hyperbolic plane $\mathbb{U}=\{z \in \mathbb{C} \mid \Im z \geq 0\}$. We are concerned about finitely generated groups of MTs that are discrete in the group of all MTs. Any MT is a map $z \rightarrow \frac{a z+b}{c z+b}$ with parameters $a, b, c, d \in \mathbb{R}$ and $a d-b c>0$. We want to prove that no system of purely rational MTs exist such that it generates a redundant number system.
It is equivanent to showing that some system of diophantic equations in eight variables has no solution. We would like to ask the auditorium for some ideas how to show it.

Hyperbolic plane

Poincaré models:

- $\mathbb{U}=\{z \in \mathbb{C} \mid \Im z>0\}$ (upper half-plane) - for computations
- metric: $\mathrm{d} s^{2}=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) / y^{2}$, where $z=x+i y$
- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit complex disc) - for visualization
- isometry $d: \mathbb{U} \rightarrow \mathbb{D}, d(z)=\frac{i z+1}{z+i}$
- isometry is conformal (preserves angles)
- boundary: $\partial \mathbb{U}=\mathbb{R} \cup\{\infty\}, \partial \mathbb{D}=\{z \in \mathbb{C}| | z \mid=1\}$

Hyperbolic plane

upper half-plane \mathbb{U}

unit disc \mathbb{D}

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathrm{A}}: \mathbb{U} \rightarrow \mathbb{U}$,
$M_{\mathbf{A}}(z)=\frac{a z+b}{c z+d}$, where $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$ and $\operatorname{det} \mathbf{A}>0$.
Property

- $M_{\mathrm{AB}}=M_{\mathbf{A}} \circ M_{\mathbf{B}}$,
- $M_{\lambda \mathbf{A}}=M_{\mathbf{A}}$ for $\lambda \in \mathbb{R} \backslash\{0\}$,
- M is conformal isometry (with respect to hyperbolic metric).

Trace of MT: $\operatorname{tr}^{2} M_{\mathbf{A}}=\frac{\operatorname{tr}^{2} \mathbf{A}}{\operatorname{det} \mathbf{A}}=\frac{(a+d)^{2}}{a d-b c}$

Möbius transformations types

Type:
Fixed points:
Trace: $\operatorname{tr}^{2} M$

Example: elliptic one in \mathbb{U}
$\in[0,4)$
$=4$

hyperbolic two in $\partial \mathbb{U}$

$$
\in(4, \infty)
$$

Angle of rotation rot M of elliptic MT: satisfies $\operatorname{tr}^{2} M=4 \cos ^{2} \frac{\operatorname{rot} M}{2}$

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.
Proposition
Elliptic MT M has finite order (hence group $\left\{M^{k}\right\}_{k \in \mathbb{Z}}$ is Fuchsian) iff $\operatorname{rot} M \in \pi \mathbb{Q}$.

A fundamental domain of G is an area $\mathbb{F} \subset \mathbb{U}$ such that its G-images tesselate \mathbb{U}.

Example - $(4,6)$-square system

Group generators $\quad M_{0}(z)=(2+1 / \sqrt{3}) z, \quad M_{1}(z)=\frac{z \sqrt{3}+1}{z+\sqrt{3}}$

+ redundant
+ many group identities
- irrational

Example - $(4, \infty)$-rectangular system

Group generators $\quad M_{0}(z)=z / 4, \quad M_{1}(z)=\frac{5 z+4}{4 z+5}$

- not redundant (unbounded fundamental domain)
- only trivial group identities
+ rational

Our interest: Rational \& with bounded fund. dom.

Question: Exists a Fuchsian group of rational transformations with bounded fundamental domain?

Likely answer: No, it does not.
Proposition
Rational elliptic MT M has finite order iff $\operatorname{tr}^{2} M \in \mathbb{N}_{0}$.
Proof:

- The only angles $\theta \in \pi \mathbb{Q}$ such that $\cos \theta \in \mathbb{Q}$ are $\theta \in\{0, \pm \pi / 3, \pm \pi / 2, \pm 2 \pi / 3, \pi\}+2 \pi \mathbb{Z}$.
- We get $\operatorname{tr}^{2} M=4 \cos ^{2} \theta / 2=2(1+\cos \theta) \in\{0,1,2,3\}$.

Our interest: Rational \& with bounded fund. dom.

Hypothesis

Let M_{1}, M_{2} be rational elliptic transformations with
$\operatorname{tr}^{2} M_{i} \in\{0,1,2,3\}$ that have no common fixed point, and $M_{1} \circ M_{2}$ is elliptic as well. Then $\operatorname{tr}^{2}\left(M_{1} \circ M_{2}\right) \notin\{0,1,2,3\}$.

Main idea: Some diophantic equation have no solution.
Hypothesis
Let G be a Fuchsian group with bounded fundamental domain. Then there exist $M_{1}, M_{2} \in G$ elliptic with no common fixed point such that $M_{1} \circ M_{2}$ is elliptic.

Main idea: "Corners" of a specific fundamental domain (called Ford f.d.) are fixed points of elliptic transformations.

Equations

$$
\begin{gather*}
M_{1} \sim\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad M_{2} \sim\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \quad M_{1} M_{2} \sim\left(\begin{array}{l}
a A+b C \\
c A+d C \\
c
\end{array}\right. \tag{1}\\
\operatorname{tr}^{2} M_{1} M_{2}=\frac{(a A+b C+c B+d D)^{2}}{(a d-b c)(A D-B C)} \in\{0,1,2,3\} \tag{2}\\
\operatorname{tr}^{2} M_{1}=\frac{(a+d)^{2}}{a d-b c} \in\{0,1,2,3\} \tag{3}\\
\operatorname{tr}^{2} M_{2}=\frac{(A+D)^{2}}{A D-B C} \in\{0,1,2,3\}
\end{gather*}
$$

Different fixed points: $\quad \phi_{1}=c(A-D)-(a-d) C \neq 0$

$$
\begin{equation*}
\phi_{2}=b(A-D)-(a-d) B \neq 0 \tag{4}
\end{equation*}
$$

Found "nearly-solutions" (by PC)

$\begin{gathered} (a, b, c, d) \\ \in \mathbb{Z}^{4} \end{gathered}$	$\begin{gathered} (A, B, C, D) \\ \in \mathbb{Z}^{4} \end{gathered}$	$\begin{gathered} \operatorname{tr}^{2} M_{1} \\ =0 . .3 \end{gathered}$	$\begin{gathered} \operatorname{tr}^{2} M_{2} \\ =0 . .3 \end{gathered}$	$\begin{gathered} \operatorname{tr}^{2} M_{1} M_{2} \\ =0 . .3 \end{gathered}$	$\begin{gathered} \phi_{1} \\ \neq 0 \end{gathered}$	$\begin{gathered} \phi_{2} \\ \neq 0 \end{gathered}$
$(6,-3,7,-3)$	$(5,-4,8,-5)$	0	3	7/3	2	6
$(1,10,-5,-1)$	$(0,-1,1,1)$	0	1	4	3	-8
(4, -1, 4, 2)	$(0,1,-4,2)$	3	1	3	0	0
$(11,-7,13,19)$	$(-4,-7,13,4)$	0	3	1	0	0
$(-1,5,-1,3)$	$(2,-5,1,-2)$	2	2	0	0	0

Equations

- $t, T, \tau \in\{0,1,2,3\}$ parameters

$$
t, T \neq 0
$$

- cases $t, T \neq 0$ or $t, T=0$

$$
\text { or } \quad t, l=0
$$

$-\frac{(a+d)^{2}}{a d-b c}=t \quad \Longrightarrow \quad \frac{1}{a d-b c}=\frac{t}{(a+d)^{2}} \quad$ or $\quad d=-a$
$-\frac{(A+D)^{2}}{A D-B C}=T \quad \Longrightarrow \quad \frac{1}{A D-B C}=\frac{T}{(A+D)^{2}} \quad$ or $\quad D=-A$
$-\frac{(a A+b C+c B+d D)^{2}}{(a d-b c)(A D-B C)}=\tau$

- $\Longrightarrow t T(a A+b C+c B+d D)^{2}=\tau(a+d)^{2}(A+D)^{2}$
$-\begin{aligned} & \phi_{1}=c(A-D)-(a-d) C \neq 0 \\ & \phi_{2}=b(A-D)-(a-d) B \neq 0\end{aligned}$
$\phi_{1}=c(A-D)-(a-d) C \neq 0$
$\phi_{2}=b(A-D)-(a-d) B \neq 0$
- cases $\quad t, T \neq 0$ or $t, T=0$

