Möbius number systems with discrete groups

Tom Hejda, tohecz@gmail.com

TIGR, FNSPE, Czech Technical University in Prague

AAMP VIII, Vila Lanna 2011

Tom Hejda (FNSPE CTU)

Discrete Möbius systems

AAMP VIII '11 1 / 12

Sac

Abstract

We study number systems generated by Möbius transformations (MT) of the hyperbolic plane $\mathbb{U} = \{z \in \mathbb{C} | \Im z \ge 0\}$. We are concerned about finitely generated groups of MTs that are discrete in the group of all MTs. Any MT is a map $z \to \frac{az+b}{cz+b}$ with parameters $a, b, c, d \in \mathbb{R}$ and ad - bc > 0. We will try to answer the question of existence of a discrete group of MTs such that all its elements have rational parameters and corresponding number system is covergent.

Poincaré models:

- $\mathbb{U} = \{z \in \mathbb{C} | \Im z > 0\}$ (upper half-plane) for computations
- metric: $ds^2 = (dx^2 + dy^2)/y^2$, where z = x + iy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Poincaré models:

- $\mathbb{U} = \{z \in \mathbb{C} | \Im z > 0\}$ (upper half-plane) for computations
- metric: $ds^2 = (dx^2 + dy^2)/y^2$, where z = x + iy
- $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$ (unit complex disc) for visualization
- isometry $d: \mathbb{U} \to \mathbb{D}$, $d(z) = \frac{iz+1}{z+i}$
- isometry is conformal (preserves angles)

Poincaré models:

• $\mathbb{U} = \{z \in \mathbb{C} | \Im z > 0\}$ (upper half-plane) — for computations

• metric:
$$ds^2 = (dx^2 + dy^2)/y^2$$
, where $z = x + iy$

- $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$ (unit complex disc) for visualization
- isometry $d:\mathbb{U}\to\mathbb{D},\;d(z)=rac{iz+1}{z+i}$
- isometry is conformal (preserves angles)
- boundary: $\partial \mathbb{U} = \mathbb{R} \cup \{\infty\}$, $\partial \mathbb{D} = \{z \in \mathbb{C} | |z| = 1\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hyperbolic plane

AAMP VIII '11 4 / 12

Ξ

990

イロト イロト イヨト イヨト

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathbf{A}} : \mathbb{U} \to \mathbb{U}$, $M_{\mathbf{A}}(z) = \frac{az+b}{cz+d}$, where $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ and det $\mathbf{A} > 0$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathbf{A}} : \mathbb{U} \to \mathbb{U}$, $M_{\mathbf{A}}(z) = \frac{az+b}{cz+d}$, where $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ and det $\mathbf{A} > 0$.

Property

- $M_{AB} = M_A \circ M_B$,
- $M_{\lambda \mathbf{A}} = M_{\mathbf{A}}$ for $\lambda \in \mathbb{R} \setminus \{\mathbf{0}\}$,
- M is conformal isometry (with respect to hyperbolic metric).

<ロト < 部 > < 注 > < 注 > < 三 > の < で</p>

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathbf{A}} : \mathbb{U} \to \mathbb{U}$, $M_{\mathbf{A}}(z) = \frac{az+b}{cz+d}$, where $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ and det $\mathbf{A} > 0$.

Property

•
$$M_{AB} = M_A \circ M_B$$
,

•
$$M_{\lambda \mathbf{A}} = M_{\mathbf{A}}$$
 for $\lambda \in \mathbb{R} \setminus \{\mathbf{0}\}$,

• M is conformal isometry (with respect to hyperbolic metric).

Trace of MT: tr²
$$M_{\mathbf{A}} = \frac{\mathrm{tr}^2 \mathbf{A}}{\mathrm{det} \mathbf{A}} = \frac{(a+d)^2}{ad-bc}$$

《曰》 《聞》 《臣》 《臣》 三臣

Type:

elliptic

parabolic

hyperbolic

Tom Hejda (FNSPE CTU)

Discrete Möbius systems

AAMP VIII '11 6 / 12

1

990

イロト イポト イヨト イヨト

3

э

< 17 ►

Tom Hejda (FNSPE CTU)

Э

1

< 17 ▶

Э

< 17 ▶

Angle of rotation rot M of elliptic MT: satisfies $tr^2 M = 4 \cos^2 \frac{rot M}{2}$

Tom Hejda (FNSPE CTU) Discrete Möbius systems

 $\exists \rightarrow$ AAMP VIII '11 6 / 12

イロト イロト イヨト イ

Sac

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.

Sac

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.

Proposition

Elliptic MT M has finite order (hence group $\{M^k\}_{k\in\mathbb{Z}}$ is Fuchsian) iff rot $M \in \pi\mathbb{Q}$.

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.

Proposition

Elliptic MT M has finite order (hence group $\{M^k\}_{k\in\mathbb{Z}}$ is Fuchsian) iff rot $M \in \pi\mathbb{Q}$.

A fundamental domain of G is an area $\mathbb{F} \subset \mathbb{U}$ such that its G-images tesselate \mathbb{U} .

Example — (4, 6)-square system

Group generators $M_0(z) = \left(2 + 1/\sqrt{3}\right)z$, $M_1(z) = \frac{z\sqrt{3}+1}{z+\sqrt{3}}$

Example — (4, 6)-square system

Group generators $M_0(z) = (2+1/\sqrt{3})z$, $M_1(z) = \frac{z\sqrt{3}+1}{z+\sqrt{3}}$

イロト イポト イヨト イ

Example — (4, 6)-square system

Group generators $M_0(z) = \left(2 + 1/\sqrt{3}\right)z$, $M_1(z) = \frac{z\sqrt{3}+1}{z+\sqrt{3}}$

イロト イロト イヨト

- + redundant
- + many group identities
- irrational

Tom Hejda (FNSPE CTU)

Sac

Example — $(4,\infty)$ -rectangular system

Group generators $M_0(z)=z/4$, $M_1(z)=rac{5z+4}{4z+5}$

- not redundant (unbounded fundamental domain)
- only trivial group identities
- + rational

Tom Hejda (FNSPE CTU)

Discrete Möbius systems

AAMP VIII '11 9 / 12

Sac

Question: Exists a **Fuchsian** group of **rational** transformations with **bounded** fundamental domain?

Sac

イロト イポト イヨト イヨト

Question: Exists a **Fuchsian** group of **rational** transformations with **bounded** fundamental domain?

Likely answer: No, it does not.

Sac

イロト イロト イヨト イ

Question: Exists a **Fuchsian** group of **rational** transformations with **bounded** fundamental domain?

Likely answer: No, it does not.

Proposition

Rational elliptic MT M has finite order iff $tr^2 M \in \mathbb{N}_0$.

Question: Exists a **Fuchsian** group of **rational** transformations with **bounded** fundamental domain?

Likely answer: No, it does not.

Proposition

Rational elliptic MT M has finite order iff $tr^2 M \in \mathbb{N}_0$.

Proof:

• The only angles $\theta \in \pi \mathbb{Q}$ such that $\cos \theta \in \mathbb{Q}$ are $\theta \in \{0, \pm \pi/3, \pm \pi/2, \pm 2\pi/3, \pi\} + 2\pi \mathbb{Z}$.

Question: Exists a **Fuchsian** group of **rational** transformations with **bounded** fundamental domain?

Likely answer: No, it does not.

Proposition

Rational elliptic MT M has finite order iff $tr^2 M \in \mathbb{N}_0$.

Proof:

The only angles θ ∈ πQ such that cos θ ∈ Q are θ ∈ {0, ±π/3, ±π/2, ±2π/3, π} + 2πZ.
We get tr² M = 4 cos² θ/2 = 2(1 + cos θ) ∈ {0, 1, 2, 3}.

Hypothesis

Let M_1, M_2 be rational elliptic transformations with $tr^2 M_i \in \mathbb{N}_0$ that have no common fixed point. Then $tr^2(M_1 \circ M_2) \notin \mathbb{N}_0$.

Hypothesis

Let M_1, M_2 be rational elliptic transformations with $tr^2 M_i \in \mathbb{N}_0$ that have no common fixed point. Then $tr^2(M_1 \circ M_2) \notin \mathbb{N}_0$.

Main idea: Some diophantic equation have no solution.

Hypothesis

Let M_1, M_2 be rational elliptic transformations with $tr^2 M_i \in \mathbb{N}_0$ that have no common fixed point. Then $tr^2(M_1 \circ M_2) \notin \mathbb{N}_0$.

Main idea: Some diophantic equation have no solution.

Hypothesis

Let G be a Fuchsian group with bounded fundamental domain. Then there exist $M_1, M_2 \in G$ elliptic with no common fixed point such that $M_1 \circ M_2$ is elliptic.

Hypothesis

Let M_1, M_2 be rational elliptic transformations with $tr^2 M_i \in \mathbb{N}_0$ that have no common fixed point. Then $tr^2(M_1 \circ M_2) \notin \mathbb{N}_0$.

Main idea: Some diophantic equation have no solution.

Hypothesis

Let G be a Fuchsian group with bounded fundamental domain. Then there exist $M_1, M_2 \in G$ elliptic with no common fixed point such that $M_1 \circ M_2$ is elliptic.

Main idea: "Corners" of a specific fundamental domain (called Ford f.d.) are fixed points of elliptic transformations.

イロト 不得下 イヨト イヨト 二日

Conclusion

Tom Hejda (FNSPE CTU)

Discrete Möbius systems

 $\exists \rightarrow$ AAMP VIII '11 12 / 12

Ξ

990

イロト イロト イヨト イ