Möbius number systems with discrete groups

Tom Hejda,
tohecz@gmail.com

TIGR, FNSPE, Czech Technical University in Prague
AAMP VIII, Vila Lanna 2011

Abstract

We study number systems generated by Möbius transformations (MT) of the hyperbolic plane $\mathbb{U}=\{z \in \mathbb{C} \mid \Im z \geq 0\}$. We are concerned about finitely generated groups of MTs that are discrete in the group of all MTs. Any MT is a map $z \rightarrow \frac{a z+b}{c z+b}$ with parameters $a, b, c, d \in \mathbb{R}$ and $a d-b c>0$. We will try to answer the question of existence of a discrete group of MTs such that all its elements have rational parameters and corresponding number system is covergent.

Hyperbolic plane

Poincaré models:

- $\mathbb{U}=\{z \in \mathbb{C} \mid \Im z>0\}$ (upper half-plane) - for computations
- metric: $\mathrm{d} s^{2}=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) / y^{2}$, where $z=x+i y$

Hyperbolic plane

Poincaré models:

- $\mathbb{U}=\{z \in \mathbb{C} \mid \Im z>0\}$ (upper half-plane) - for computations
- metric: $\mathrm{d} s^{2}=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) / y^{2}$, where $z=x+i y$
- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit complex disc) - for visualization
- isometry $d: \mathbb{U} \rightarrow \mathbb{D}, d(z)=\frac{i z+1}{z+i}$
- isometry is conformal (preserves angles)

Hyperbolic plane

Poincaré models:

- $\mathbb{U}=\{z \in \mathbb{C} \mid \Im z>0\}$ (upper half-plane) - for computations
- metric: $\mathrm{d} s^{2}=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) / y^{2}$, where $z=x+i y$
- $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ (unit complex disc) - for visualization
- isometry $d: \mathbb{U} \rightarrow \mathbb{D}, d(z)=\frac{i z+1}{z+i}$
- isometry is conformal (preserves angles)
- boundary: $\partial \mathbb{U}=\mathbb{R} \cup\{\infty\}, \partial \mathbb{D}=\{z \in \mathbb{C}| | z \mid=1\}$

Hyperbolic plane

upper half-plane \mathbb{U}

unit disc \mathbb{D}

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathbf{A}}: \mathbb{U} \rightarrow \mathbb{U}$, $M_{\mathbf{A}}(z)=\frac{a z+b}{c z+d}$, where $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$ and $\operatorname{det} \mathbf{A}>0$.

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathbf{A}}: \mathbb{U} \rightarrow \mathbb{U}$, $M_{\mathbf{A}}(z)=\frac{a z+b}{c z+d}$, where $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$ and $\operatorname{det} \mathbf{A}>0$.

Property

- $M_{A B}=M_{A} \circ M_{B}$,
- $M_{\lambda \mathbf{A}}=M_{\mathbf{A}}$ for $\lambda \in \mathbb{R} \backslash\{0\}$,
- M is conformal isometry (with respect to hyperbolic metric).

Möbius transformations

Orientation-preserving Möbius transformation (MT) is $M_{\mathbf{A}}: \mathbb{U} \rightarrow \mathbb{U}$, $M_{\mathbf{A}}(z)=\frac{a z+b}{c z+d}$, where $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$ and $\operatorname{det} \mathbf{A}>0$.

Property

- $M_{A B}=M_{A} \circ M_{B}$,
- $M_{\lambda \mathbf{A}}=M_{\mathbf{A}}$ for $\lambda \in \mathbb{R} \backslash\{0\}$,
- M is conformal isometry (with respect to hyperbolic metric).

Trace of MT: $\operatorname{tr}^{2} M_{\mathbf{A}}=\frac{\operatorname{tr}^{2} \mathbf{A}}{\operatorname{det} \mathbf{A}}=\frac{(a+d)^{2}}{a d-b c}$

Möbius transformations types

Type:
elliptic
parabolic
hyperbolic

Möbius transformations types

Möbius transformations types

Type:	elliptic	parabolic	hyperbolic
Fixed points:	one in \mathbb{U} $\in[0,4)$		
Trace: $\operatorname{tr}^{2} M$			

Möbius transformations types

Type:	elliptic	parabolic	hyperbolic
Fixed points:	one in \mathbb{U}	one in $\partial \mathbb{U}$	two in $\partial \mathbb{U}$
Trace: $\operatorname{tr}^{2} M$	$\in[0,4)$	$=4$	$\in(4, \infty)$

Möbius transformations types

Angle of rotation rot M of elliptic MT: satisfies $\operatorname{tr}^{2} M=4 \cos ^{2} \frac{\operatorname{rot} M}{2}$

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.

Proposition

Elliptic MT M has finite order (hence group $\left\{M^{k}\right\}_{k \in \mathbb{Z}}$ is Fuchsian) iff $\operatorname{rot} M \in \pi \mathbb{Q}$.

Fuchsian groups and Möbius number systems

A group G of MTs is Fuchsian, if it is discrete, i.e. its elements do not accumulate at identity.

Proposition

Elliptic MT M has finite order (hence group $\left\{M^{k}\right\}_{k \in \mathbb{Z}}$ is Fuchsian) iff $\operatorname{rot} M \in \pi \mathbb{Q}$.

A fundamental domain of G is an area $\mathbb{F} \subset \mathbb{U}$ such that its G-images tesselate \mathbb{U}.

Example - $(4,6)$-square system

Group generators $\quad M_{0}(z)=(2+1 / \sqrt{3}) z, \quad M_{1}(z)=\frac{z \sqrt{3}+1}{z+\sqrt{3}}$

Example - $(4,6)$-square system

Group generators $\quad M_{0}(z)=(2+1 / \sqrt{3}) z, \quad M_{1}(z)=\frac{z \sqrt{3}+1}{z+\sqrt{3}}$

Example - $(4,6)$-square system

Group generators $\quad M_{0}(z)=(2+1 / \sqrt{3}) z, \quad M_{1}(z)=\frac{z \sqrt{3}+1}{z+\sqrt{3}}$

+ redundant
+ many group identities
- irrational

Example - $(4, \infty)$-rectangular system

Group generators $\quad M_{0}(z)=z / 4, \quad M_{1}(z)=\frac{5 z+4}{4 z+5}$

- not redundant (unbounded fundamental domain)
- only trivial group identities
+ rational

Our interest: Rational \& with bounded fund. dom.

Question: Exists a Fuchsian group of rational transformations with bounded fundamental domain?

Our interest: Rational \& with bounded fund. dom.

Question: Exists a Fuchsian group of rational transformations with bounded fundamental domain?

Likely answer: No, it does not.

Our interest: Rational \& with bounded fund. dom.

Question: Exists a Fuchsian group of rational transformations with bounded fundamental domain?

Likely answer: No, it does not.
Proposition
Rational elliptic $M T M$ has finite order iff $\operatorname{tr}^{2} M \in \mathbb{N}_{0}$.

Our interest: Rational \& with bounded fund. dom.

Question: Exists a Fuchsian group of rational transformations with bounded fundamental domain?

Likely answer: No, it does not.
Proposition
Rational elliptic $M T M$ has finite order iff $\operatorname{tr}^{2} M \in \mathbb{N}_{0}$.
Proof:

- The only angles $\theta \in \pi \mathbb{Q}$ such that $\cos \theta \in \mathbb{Q}$ are $\theta \in\{0, \pm \pi / 3, \pm \pi / 2, \pm 2 \pi / 3, \pi\}+2 \pi \mathbb{Z}$.

Our interest: Rational \& with bounded fund. dom.

Question: Exists a Fuchsian group of rational transformations with bounded fundamental domain?

Likely answer: No, it does not.

Proposition

Rational elliptic $M T M$ has finite order iff $\operatorname{tr}^{2} M \in \mathbb{N}_{0}$.
Proof:

- The only angles $\theta \in \pi \mathbb{Q}$ such that $\cos \theta \in \mathbb{Q}$ are $\theta \in\{0, \pm \pi / 3, \pm \pi / 2, \pm 2 \pi / 3, \pi\}+2 \pi \mathbb{Z}$.
- We get $\operatorname{tr}^{2} M=4 \cos ^{2} \theta / 2=2(1+\cos \theta) \in\{0,1,2,3\}$.

Our interest: Rational \& with bounded fund. dom.

Hypothesis
Let M_{1}, M_{2} be rational elliptic transformations with $\operatorname{tr}^{2} M_{i} \in \mathbb{N}_{0}$ that have no common fixed point. Then $\operatorname{tr}^{2}\left(M_{1} \circ M_{2}\right) \notin \mathbb{N}_{0}$.

Our interest: Rational \& with bounded fund. dom.

Hypothesis
Let M_{1}, M_{2} be rational elliptic transformations with $\operatorname{tr}^{2} M_{i} \in \mathbb{N}_{0}$ that have no common fixed point. Then $\operatorname{tr}^{2}\left(M_{1} \circ M_{2}\right) \notin \mathbb{N}_{0}$.

Main idea: Some diophantic equation have no solution.

Our interest: Rational \& with bounded fund. dom.

Hypothesis

Let M_{1}, M_{2} be rational elliptic transformations with $\operatorname{tr}^{2} M_{i} \in \mathbb{N}_{0}$ that have no common fixed point. Then $\operatorname{tr}^{2}\left(M_{1} \circ M_{2}\right) \notin \mathbb{N}_{0}$.

Main idea: Some diophantic equation have no solution.

Hypothesis

Let G be a Fuchsian group with bounded fundamental domain. Then there exist $M_{1}, M_{2} \in G$ elliptic with no common fixed point such that $M_{1} \circ M_{2}$ is elliptic.

Hypothesis

Let M_{1}, M_{2} be rational elliptic transformations with $\operatorname{tr}^{2} M_{i} \in \mathbb{N}_{0}$ that have no common fixed point. Then $\operatorname{tr}^{2}\left(M_{1} \circ M_{2}\right) \notin \mathbb{N}_{0}$.

Main idea: Some diophantic equation have no solution.

Hypothesis

Let G be a Fuchsian group with bounded fundamental domain. Then there exist $M_{1}, M_{2} \in G$ elliptic with no common fixed point such that $M_{1} \circ M_{2}$ is elliptic.

Main idea: "Corners" of a specific fundamental domain (called Ford f.d.) are fixed points of elliptic transformations.

Conclusion

Redundant
 X
 Rational

