Morphisms preserving the set of words coding three interval exchange

Tomáš Hejda

Department of Mathematics FNSPE, Czech Technical University in Prague

tohe@centrum.cz

Journées Montoises 2010

Combinatorics on words

- Alphabet {0,1}, {A,B,C}
- (Right) infinite word $u = u_0 u_1 u_2 \cdots$
- Finite word $w = w_0 w_1 \cdots w_{n-1}$, length n
- Morphism φ on words, $\varphi(uv) = \varphi(u)\varphi(v)$, given by the images of the letters

ullet 2-interval exchange transformation $S_{arepsilon}, \quad arepsilon \in (0,1)$

ullet Sturmian word $oldsymbol{s}_{arepsilon,x_0}=s_0s_1s_2\cdots$, $\qquad x_0\in[0,1), \qquad arepsilon
otin \mathbb{Q}$

$$s_i = \begin{cases} 0 & \text{if } S_{\varepsilon}^i(x_0) \in [0, \varepsilon), \\ 1 & \text{if } S_{\varepsilon}^i(x_0) \in [\varepsilon, 1). \end{cases}$$

or partition $(0,1]=(0,\varepsilon]\cup(\varepsilon,1]$

ullet 2-interval exchange transformation $S_{arepsilon}, \quad arepsilon \in (0,1)$

 $\bullet \ \, \mathsf{Sturmian} \ \, \mathsf{word} \ \, \boldsymbol{s}_{\varepsilon,x_0} = s_0 s_1 s_2 \cdots, \quad \, x_0 \in [0,1), \quad \, \varepsilon \notin \mathbb{Q}$

$$s_i = egin{cases} 0 & ext{if } S^i_{arepsilon}(x_0) \in [0,arepsilon), \ 1 & ext{if } S^i_{arepsilon}(x_0) \in [arepsilon, 1). \end{cases}$$

or partition $(0,1]=(0,arepsilon]\cup(arepsilon,1]$

ullet 2-interval exchange transformation $S_{arepsilon}, \quad arepsilon \in (0,1)$

ullet Sturmian word $oldsymbol{s}_{arepsilon,x_0}=s_0s_1s_2\cdots$, $x_0\in[0,1)$, $arepsilon
otin \mathbb{Q}$

$$s_i = egin{cases} 0 & ext{if } S^i_{arepsilon}(x_0) \in [0,arepsilon), \ 1 & ext{if } S^i_{arepsilon}(x_0) \in [arepsilon, 1). \end{cases}$$

or partition $(0,1]=(0,arepsilon]\cup(arepsilon,1]$

• 3-interval exchange transformation $T_{\alpha,\beta}$, $\alpha,\beta\in(0,1)$, $\alpha+\beta<1$

ullet 3iet word $oldsymbol{s}_{lpha,eta,\mathbf{x_0}}=s_0s_1s_2\cdots$, $oldsymbol{x_0}\in[0,1)$, $egin{array}{c} rac{1-lpha}{1+eta}
otin\mathbb{Q} \end{array}$

$$s_{i} = \begin{cases} A & \text{if } T_{\alpha,\beta}^{i}(x_{0}) \in [0,\alpha) \\ B & \text{if } T_{\alpha,\beta}^{i}(x_{0}) \in [\alpha,\alpha+\beta) \\ C & \text{if } T_{\alpha,\beta}^{i}(x_{0}) \in [\alpha+\beta,1). \end{cases}$$

or partition $(0,1] = (0,\alpha] \cup (\alpha,\alpha+\beta] \cup (\alpha+\beta,1]$

Sturmian and 3iet-preserving morphisms

- Binary morphism φ is Sturmian if $\varphi(u)$ is a Sturmian word for every u Sturmian
- Example: Fibonacci morphism $\varphi(0)=01, \quad \varphi(1)=0$
- Ternary morphism η is 3iet-preserving if $\eta(u)$ is a 3iet word for every 3iet word u
- Example: $\eta(A) = B$, $\eta(B) = CAC$, $\eta(C) = C$
- Incidence matrix of a morphism:

$$(\mathsf{M}_\varphi)_{\mathsf{a}\mathsf{b}} = |\varphi(\mathsf{a})|_{\mathsf{b}}$$

Example:
$$\mathbf{M}_{arphi}=egin{pmatrix}1&1\\1&0\end{pmatrix}$$
 $\mathbf{M}_{\eta}=egin{pmatrix}0&1&0\\1&0&2\\0&0&1\end{pmatrix}$

Sturmian and 3iet-preserving morphisms

- Binary morphism φ is Sturmian if $\varphi(u)$ is a Sturmian word for every u Sturmian
- Example: Fibonacci morphism $\varphi(0)=01, \quad \varphi(1)=0$
- Ternary morphism η is 3iet-preserving if $\eta(u)$ is a 3iet word for every 3iet word u
- Example: $\eta(A) = B$, $\eta(B) = CAC$, $\eta(C) = C$
- Incidence matrix of a morphism:

$$(\mathsf{M}_\varphi)_{\mathsf{a}\mathsf{b}} = |\varphi(\mathsf{a})|_{\mathsf{b}}$$

Example:
$$\mathsf{M}_{arphi}=egin{pmatrix}1&1\\1&0\end{pmatrix}\qquad \mathsf{M}_{\eta}=egin{pmatrix}0&1&0\\1&0&2\\0&0&1\end{pmatrix}$$

Sturmian and 3iet-preserving morphisms

- Binary morphism φ is Sturmian if $\varphi(u)$ is a Sturmian word for every u Sturmian
- Example: Fibonacci morphism $\varphi(0)=01, \quad \varphi(1)=0$
- Ternary morphism η is 3iet-preserving if $\eta(u)$ is a 3iet word for every 3iet word u
- Example: $\eta(A) = B$, $\eta(B) = CAC$, $\eta(C) = C$
- Incidence matrix of a morphism:

$$(\mathsf{M}_{arphi})_{\mathsf{a}\mathsf{b}} = |arphi(\mathsf{a})|_{\mathsf{b}}$$

$$ullet$$
 Example: $\mathbf{M}_{arphi}=egin{pmatrix}1&1\1&0\end{pmatrix} \qquad \mathbf{M}_{\eta}=egin{pmatrix}0&1&0\1&0&2\0&0&1\end{pmatrix}$

Sturmian and 3iet-preserving morphisms Results

Sturmian	3iet-preserving
Monoid of morphisms	
3 generators	not finitely generated
Incidence matrices	
N.C.: det $\mathbf{M}=\pm 1$	N.C.: $det \mathbf{M} = \pm 1 \;or\; det \mathbf{M} = 0$
S.C.: $\det \mathbf{M} = \pm 1$	S.C.: see Theorem III below
Morphisms to matrix	
exactly $\ \mathbf{M}\ -1$ morphisms	from $\mathcal{O}(1)$ up to $\mathcal{O}(\ \mathbf{M}\)$ morphisms
conjugates of one morphism	conjugates of more?

Amicability Amicable words

• Amicable Sturmian words/factors: $u \propto v \dots$ Example:

$$u = 0 \ 01 \ 0 \ 1 \ 0 \ 01 \ \cdots$$

 $v = 0 \ 10 \ 0 \ 1 \ 0 \ 10 \ \cdots$

- Ternarization $ter(u, v) = A B A C A B \cdots$
- Observation: Parikh vectors or u and v coincide (finite case)
 The words u and v have the same slope (infinite case)

Amicability Amicable words

• Amicable Sturmian words/factors: $u \propto v \dots$ Example:

$$u = 0 \ 01 \ 0 \ 1 \ 0 \ 01 \ \cdots$$

 $v = 0 \ 10 \ 0 \ 1 \ 0 \ 10 \ \cdots$

- Ternarization
- $ter(u, v) = A B A C A B \cdots$
- Observation: Parikh vectors or u and v coincide (finite case)
 The words u and v have the same slope (infinite case)

Amicability Amicable words

• Amicable Sturmian words/factors: $u \propto v \dots$ Example:

$$u = 0 \ 01 \ 0 \ 1 \ 0 \ 01 \ \cdots$$

 $v = 0 \ 10 \ 0 \ 1 \ 0 \ 10 \ \cdots$

- Ternarization $ter(u, v) = A B A C A B \cdots$
- Observation: Parikh vectors or u and v coincide (finite case) The words u and v have the same slope (infinite case)

Amicability

Amicable morphisms

ullet Amicable Sturmian morphisms: $arphi \propto \psi$ if

$$\varphi(0) \propto \psi(0), \qquad \varphi(1) \propto \psi(1), \quad {\sf and} \quad \varphi(01) \propto \psi(10)$$

ullet **Observation:** Incidence matrices of arphi and ψ coincide.

$$\varphi(0) = 010, \qquad \varphi(1) = \underline{01}, \qquad \varphi(01) = \underline{01001}$$

• Example: $\psi(0) = 010, \qquad \psi(1) = \overline{10}, \qquad \psi(10) = \overline{100}\overline{10}$

$$\eta(A) = ACA, \quad \eta(C) = B, \quad \eta(B) = BAB$$

ullet -lernarization of amicable morphisms $\eta = \mathsf{ter}(arphi, \psi)$

$$\eta(A) = \operatorname{ter}(\varphi(0), \psi(0))$$

$$\eta(B) = \operatorname{ter}(\varphi(01), \psi(10))$$

$$\eta(\mathcal{C}) = \operatorname{ter}(\varphi(1), \psi(1))$$

Amicability

Amicable morphisms

ullet Amicable Sturmian morphisms: $arphi \propto \psi$ if

$$\varphi(0) \propto \psi(0), \qquad \varphi(1) \propto \psi(1), \quad \text{and} \quad \varphi(01) \propto \psi(10)$$

ullet Observation: Incidence matrices of arphi and ψ coincide.

$$\begin{array}{ll} \varphi(0)=010, & \varphi(1)=\underline{01}, & \varphi(01)=\underline{01001}\\ \bullet \text{ Example: } \psi(0)=010, & \psi(1)=\overline{10}, & \psi(10)=\overline{10010}\\ \eta(A)=ACA, & \eta(C)=B, & \eta(B)=BAB \end{array}$$

ullet Ternarization of amicable morphisms $\eta = \mathsf{ter}(arphi, \psi)$

$$\eta(A) = \operatorname{ter}(\varphi(0), \psi(0))
\eta(B) = \operatorname{ter}(\varphi(01), \psi(10))
\eta(C) = \operatorname{ter}(\varphi(1), \psi(1))$$

Amicability

Amicable morphisms

ullet Amicable Sturmian morphisms: $arphi \propto \psi$ if

$$\varphi(0) \propto \psi(0), \qquad \varphi(1) \propto \psi(1), \quad \text{and} \quad \varphi(01) \propto \psi(10)$$

ullet Observation: Incidence matrices of arphi and ψ coincide.

$$\begin{array}{ll} \varphi(0) = 010, & \varphi(1) = \underline{01}, & \varphi(01) = \underline{010}\underline{01} \\ \psi(0) = 010, & \psi(1) = \overline{10}, & \psi(10) = \overline{100}\underline{10} \\ \eta(A) = ACA, & \eta(C) = B, & \eta(B) = BAB \end{array}$$

• Ternarization of amicable morphisms $\eta = \operatorname{ter}(\varphi, \psi)$

$$\eta(A) = \operatorname{ter}(\varphi(0), \psi(0))$$

 $\eta(B) = \operatorname{ter}(\varphi(01), \psi(10))$
 $\eta(C) = \operatorname{ter}(\varphi(1), \psi(1))$

Properties of ternarizations I.

Proposition (Arnoux, Berthé, Masáková, Pelantová)

Let \mathbf{u}, \mathbf{v} be Sturmian words, $\mathbf{u} \propto \mathbf{v}$. Then $\operatorname{ter}(\mathbf{u}, \mathbf{v})$ is a 3iet word. Moreover, every 3iet word is a ternarization of a pair of amicable Sturmian words.

Proposition

Let ${f u} \propto {f v}$ be amicable words and ${f arphi} \propto \psi$ amicable morphisms. Then ${f arphi}({f u}) \propto \psi({f v})$ and

$$ter(\varphi, \psi)(ter(\mathbf{u}, \mathbf{v})) = ter(\varphi(\mathbf{u}), \psi(\mathbf{v})).$$

Properties of ternarizations I.

Proposition (Arnoux, Berthé, Masáková, Pelantová)

Let \mathbf{u}, \mathbf{v} be Sturmian words, $\mathbf{u} \propto \mathbf{v}$. Then $\operatorname{ter}(\mathbf{u}, \mathbf{v})$ is a 3iet word. Moreover, every 3iet word is a ternarization of a pair of amicable Sturmian words.

Proposition

Let ${f u} \propto {f v}$ be amicable words and ${f arphi} \propto \psi$ amicable morphisms.

Then $arphi(oldsymbol{u}) \propto \psi(oldsymbol{v})$ and

$$ter(\varphi, \psi)(ter(\mathbf{u}, \mathbf{v})) = ter(\varphi(\mathbf{u}), \psi(\mathbf{v})).$$

Properties of ternarizations II.

Theorem (I.)

- Every ternarization $\eta = \text{ter}(\varphi, \psi)$ of a pair of amicable Sturmian morphisms $\varphi \propto \psi$ is 3iet-preserving
- $\textbf{ 2} \quad \textit{Ternarizations satisfy} \ \text{ter}(\varphi,\psi) \circ \text{ter}(\varphi',\psi') = \text{ter}(\varphi \circ \varphi',\psi \circ \psi')$
- ullet All incidence matrices of them have $\det \mathbf{M} = +1$
 - There exist 3iet-preserving morphisms that are not ternarizations
- Example 1: $\eta(A) = C$, $\eta(B) = B$, $\eta(C) = A$
- Example 2: $\eta(A) = B$, $\eta(B) = CAC$, $\eta(C) = C$

Properties of ternarizations II.

Theorem (I.)

- Every ternarization $\eta = \text{ter}(\varphi, \psi)$ of a pair of amicable Sturmian morphisms $\varphi \propto \psi$ is 3iet-preserving
- ② Ternarizations satisfy $ter(\varphi, \psi) \circ ter(\varphi', \psi') = ter(\varphi \circ \varphi', \psi \circ \psi')$
- 3 All incidence matrices of them have $\det \mathbf{M} = +1$
 - There exist 3iet-preserving morphisms that are not ternarizations
 - Example 1: $\eta(A) = C$, $\eta(B) = B$, $\eta(C) = A$
 - Example 2: $\eta(A) = B$, $\eta(B) = CAC$, $\eta(C) = C$

Number of amicable pairs

Theorem (II.)

Let $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix} \in \mathbb{N}^{2 \times 2}$ be a matrix with $\det \mathbf{A} = \pm 1$. Then the number of amicable pairs of Sturmian morphisms $\varphi \propto \psi$ with $\mathbf{M}_{\varphi} = \mathbf{M}_{\psi} = \mathbf{A}$ is equal to

$$m(N-1)+\frac{m}{2}(\det \mathbf{A}-m),$$

where $m = \min\{p_0 + p_1, q_0 + q_1\}$ and $N = p_0 + q_0 + p_1 + q_1$.

Theorem II.

Ideas of the proof (for the case $\det \mathbf{A} = +1$)

- Notions: $p = p_0 + p_1$, $N = p_0 + p_1 + q_0 + q_1$, $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix}$
- Let φ be a Sturmian morphism with incidence matrix **A**. Then $\varphi(01)$ codes 2iet with rational slope p/N and start point k/N for some $k \in \{0, \ldots, N-1\}$
- ullet Because $p\perp N$, the orbit satisfies

Theorem II.

Ideas of the proof (for the case $\det \mathbf{A} = +1$)

- Notions: $p = p_0 + p_1$, $N = p_0 + p_1 + q_0 + q_1$, $\mathbf{A} = \begin{pmatrix} p_0 & q_0 \\ p_1 & q_1 \end{pmatrix}$
- Let φ be a Sturmian morphism with incidence matrix **A**. Then $\varphi(01)$ codes 2iet with rational slope p/N and start point k/N for some $k \in \{0, \ldots, N-1\}$
- Because $p \perp N$, the orbit satisfies

Theorem III.

Theorem

A matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ is the incidence matrix of the ternarization of a pair of amicable Sturmian morphisms \iff there exist matrix

$${f A}=\left(egin{smallmatrix} p_0 & q_0 & q_0 \ p_1 & q_1 \end{smallmatrix}
ight)\in \mathbb{N}^{2 imes 2}$$
 with $\det{f A}=\Delta=\pm 1$ and numbers b_0,b_1 such that

(a)
$$\left| \frac{b_0(p_1+q_1)-b_1(p_0+q_0)}{p_0+q_0+p_1+q_1} \right| < 1$$
,

(b)
$$\frac{1-\Delta}{2} \leq b_0 + b_1 \leq \min\{p_0 + p_1, q_0 + q_1\} - \frac{\Delta+1}{2}$$
,

(c)
$$B = P\begin{pmatrix} A & b_0 \\ 0 & 0 & \Delta \end{pmatrix} P^{-1}$$
, where $P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

Ideas of the proof:

- Rational 2-interval exchange
- Numbers p and N are co-prime
- Congruence modulo N

Theorem III.

Theorem

A matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ is the incidence matrix of the ternarization of a pair of amicable Sturmian morphisms \iff there exist matrix

$${f A}=\left(egin{smallmatrix} p_0 & q_0 & q_0 \\ p_1 & q_1 \end{smallmatrix}
ight)\in \mathbb{N}^{2 imes 2}$$
 with $\det{f A}=\Delta=\pm 1$ and numbers b_0,b_1 such that

(a)
$$\left| \frac{b_0(p_1+q_1)-b_1(p_0+q_0)}{p_0+q_0+p_1+q_1} \right| < 1$$
,

(b)
$$\frac{1-\Delta}{2} \leq b_0 + b_1 \leq \min\{p_0 + p_1, q_0 + q_1\} - \frac{\Delta+1}{2}$$
,

(c)
$$B = P\begin{pmatrix} A & b_0 \\ 0 & 0 & \Delta \end{pmatrix} P^{-1}$$
, where $P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

Ideas of the proof:

- Rational 2-interval exchange
- 2 Numbers p and N are co-prime
- Congruence modulo N

Conjecture

There exist four 3iet-preserving morphisms ξ_1, \ldots, ξ_4 such that for all 3iet-preserving morphisms η we have:

- either det $\mathbf{M}_{\eta} = \mathbf{0}$,
- ② or $\exists i \in \{1, ... 4\}$ such that $\xi_i \circ \eta$ is a ternarization of amicable Sturmian morphisms.

Conjecture

Let η be a 3iet-preserving morphism, and η' a morphism over $\{A,B,C\}^*$ satisfying $\mathbf{M}_{\eta} = \mathbf{M}_{\eta'}$. Then η' is 3iet-preserving iff η' is conjugate to η , i.e., there exists a word $\mathbf{x} \in \{A,B,C\}^*$ such that

$$(\forall y \in \{A, B, C\}^*)(\eta(y)x = x\eta'(y))$$

or $(\forall y \in \{A, B, C\}^*)(x\eta(y) = \eta'(y)x)$

Conjecture

There exist four 3iet-preserving morphisms ξ_1, \ldots, ξ_4 such that for all 3iet-preserving morphisms η we have:

- either det $\mathbf{M}_{\eta} = 0$,
- ② or $\exists i \in \{1, ... 4\}$ such that $\xi_i \circ \eta$ is a ternarization of amicable Sturmian morphisms.

Conjecture

Let η be a 3iet-preserving morphism, and η' a morphism over $\{A,B,C\}^*$ satisfying $\mathbf{M}_{\eta} = \mathbf{M}_{\eta'}$. Then η' is 3iet-preserving iff η' is conjugate to η , i.e., there exists a word $x \in \{A,B,C\}^*$ such that

$$(\forall y \in \{A, B, C\}^*)(\eta(y)x = x\eta'(y))$$

or $(\forall y \in \{A, B, C\}^*)(x\eta(y) = \eta'(y)x)$.

What would the conjectures mean?

- Full characterization of matrices of 3iet-preserving morphisms.
- Idea how to generate all 3iet-preserving morphisms to a matrix (using standard morphisms).

What would they not mean?

- Generators of monoid of 3iet-preserving morphisms
- Generators of monoid of their incidence matrices.

What would the conjectures mean?

- Full characterization of matrices of 3iet-preserving morphisms.
- 2 Idea how to generate all 3iet-preserving morphisms to a matrix (using standard morphisms).

What would they not mean?

- Generators of monoid of 3iet-preserving morphisms.
- Generators of monoid of their incidence matrices.

References

P. Ambrož, A. Frid, Z. Masáková, and E. Pelantová, *On the number of factors in codings of three interval exchange*, Preprint 2009, arXiv:0904.2258v1.

P. Ambrož, Z. Masáková, and E. Pelantová, *Morphisms fixing words associated with exchange of three intervals*, RAIRO Theor. Inform. Appl. **44** (2010), 3–17.

P. Ambrož, Z. Masáková, and E. Pelantová, *Matrices of 3-iet preserving morphisms*, Theoret. Comput. Sci. **400** (2008), no. 1-3, 113–136.

P. Arnoux, V. Berthé, Z. Masáková, and E. Pelantová, *Sturm numbers and substitution invariance of 3iet words*, Integers **8** (2008), A14, 17.

J. Berstel, *Recent results in Sturmian words*, Developments in language theory, II (Magdeburg, 1995), World Sci. Publ., River Edge, NJ, 1996, pp. 13–24.

L. Háková, *Morphisms on generalized sturmian words*, Master's thesis, Czech Technical University in Prague, 2008.

M. Lothaire, *Algebraic combinatorics on words*, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002.

P. Séébold, On the conjugation of standard morphisms, Theoret. Comput. Sci. 195 (1998), no. 1, 91–109.