Arithmetic Complexity of Sturmian Words

Tom Hejda, tohe@centrum.cz
based on work of J. Cassaigne and A. Frid

Doppler Institute \& Department of Mathematics, FNSPE, Czech Technical University in Prague

Combinatorics on Words, Hojsova Straz 2010

Notation

- alphabet $\{0,1\}$
- (right) infinite word $s=s_{0} s_{1} s_{2} \cdots$
- finite word $w=w_{0} w_{1} \cdots w_{n-1} w_{n}$, length $n+1$
- fractional part of $x \in \mathbb{R}$ is $\{\{x\}\}=x-\lfloor x\rfloor$.

Complexity Functions

- factor complexity $\mathcal{C}_{\boldsymbol{u}}(n+1)=\#$ of "subword" factors

$$
\mathcal{L}_{\boldsymbol{u}}(n+1)=\left\{u_{k} u_{k+1} u_{k+2} \cdots u_{k+n} \mid k \geq 0\right\}
$$

Example: factors and arit. factors of $\boldsymbol{u}=(01)^{\omega}$

Complexity Functions

- factor complexity $\mathcal{C}_{\boldsymbol{u}}(n+1)=\#$ of "subword" factors

$$
\mathcal{L}_{\boldsymbol{u}}(n+1)=\left\{u_{k} u_{k+1} u_{k+2} \cdots u_{k+n} \mid k \geq 0\right\}
$$

- Abelian complexity $\mathcal{C}_{\boldsymbol{u}}^{a b}(n+1)=\#$ of Parikh vectors

$$
\left\{\left(|w|_{0},|w|_{1}\right) \mid w \in \mathcal{L}_{\boldsymbol{u}}(n+1)\right\}
$$

Complexity Functions

- factor complexity $\mathcal{C}_{\boldsymbol{u}}(n+1)=\#$ of "subword" factors

$$
\mathcal{L}_{\boldsymbol{u}}(n+1)=\left\{u_{k} u_{k+1} u_{k+2} \cdots u_{k+n} \mid k \geq 0\right\}
$$

- Abelian complexity $\mathcal{C}_{\boldsymbol{u}}^{a b}(n+1)=\#$ of Parikh vectors

$$
\left\{\left(|w|_{0},|w|_{1}\right) \mid w \in \mathcal{L}_{\boldsymbol{u}}(n+1)\right\}
$$

- arithmetic complexity $\mathcal{C}_{\boldsymbol{u}}^{a r}(n+1)=\#$ of arithmetic factors

$$
\mathcal{A}_{\boldsymbol{u}}(n+1)=\left\{u_{k} u_{k+d} u_{k+2 d} \cdots u_{k+n d} \mid k \geq 0, d \geq 1\right\}
$$

Complexity Functions

- factor complexity $\mathcal{C}_{\boldsymbol{u}}(n+1)=\#$ of "subword" factors

$$
\mathcal{L}_{\boldsymbol{u}}(n+1)=\left\{u_{k} u_{k+1} u_{k+2} \cdots u_{k+n} \mid k \geq 0\right\}
$$

- Abelian complexity $\mathcal{C}_{\boldsymbol{u}}^{a b}(n+1)=\#$ of Parikh vectors

$$
\left\{\left(|w|_{0},|w|_{1}\right) \mid w \in \mathcal{L}_{\boldsymbol{u}}(n+1)\right\}
$$

- arithmetic complexity $\mathcal{C}_{\boldsymbol{u}}^{a r}(n+1)=\#$ of arithmetic factors

$$
\mathcal{A}_{\boldsymbol{u}}(n+1)=\left\{u_{k} u_{k+d} u_{k+2 d} \cdots u_{k+n d} \mid k \geq 0, d \geq 1\right\}
$$

Example: factors and arit. factors of $\boldsymbol{u}=(01)^{\omega}$

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{u}}(n)=n+1 \quad \forall n \geq 0$
codes irrational 2iet
u is mechanical with irrational slope
(7) u is a cutting sequence with irrational slope

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{u}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
codes irrational 2iet
u is mechanical with irrational slope

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{u}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{u}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

(4) \boldsymbol{u} is a rotation word with irrational slope α

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{U}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

(4) \boldsymbol{u} is a rotation word with irrational slope α

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{(k+1) \alpha+\rho\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{U}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

(4) \boldsymbol{u} is a rotation word with irrational slope α

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{(k+1) \alpha+\rho\} \ll \alpha, \\ 0 & \text { otherwise }\end{cases}
$$

- upper rotation word $\boldsymbol{s}_{\alpha}^{\prime}(\rho)-\leq$ instead of $<$

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{U}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

(4) \boldsymbol{u} is a rotation word with irrational slope α

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{(k+1) \alpha+\rho\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

- upper rotation word $\boldsymbol{s}_{\alpha}^{\prime}(\rho)-\leq$ instead of $<$
(5) \boldsymbol{u} codes irrational 2iet

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{U}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

(4) \boldsymbol{u} is a rotation word with irrational slope α

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{(k+1) \alpha+\rho\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

- upper rotation word $\boldsymbol{s}_{\alpha}^{\prime}(\rho)-\leq$ instead of $<$
(5) \boldsymbol{u} codes irrational 2iet
(6) \boldsymbol{u} is mechanical with irrational slope

Sturmian Words

Many ways how to define Sturmian words - infinite \boldsymbol{u} is Sturmian, iff,
(1) factor complexity satisfies $\quad \mathcal{C}_{\boldsymbol{U}}(n)=n+1 \quad \forall n \geq 0$
(2) \boldsymbol{u} is aperiodic and balanced
(3) \boldsymbol{u} is aperiodic and Abelian complexity satisfies

$$
\mathcal{C}_{\boldsymbol{u}}^{a b}(n)=2 \quad \forall n \geq 1
$$

(4) \boldsymbol{u} is a rotation word with irrational slope α

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{(k+1) \alpha+\rho\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

- upper rotation word $\boldsymbol{s}_{\alpha}^{\prime}(\rho)$ - \leq instead of $<$
(5) \boldsymbol{u} codes irrational 2iet
(6) \boldsymbol{u} is mechanical with irrational slope
(7) \boldsymbol{u} is a cutting sequence with irrational slope

Bounds for Arithmetic Complexity of Sturmian Words

Theorem

Let \boldsymbol{u} be Sturmian word. Then its arithmetic complexity satisfies for all $n \geq 1$

$$
\frac{n^{3}}{4 \pi^{2}}+O\left(n^{2}\right) \leq \mathcal{C}_{\boldsymbol{u}}^{a r}(n) \leq\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Bounds for Arithmetic Complexity of Sturmian Words

Theorem

Let \boldsymbol{u} be Sturmian word. Then its arithmetic complexity satisfies for all $n \geq 1$

$$
\frac{n^{3}}{4 \pi^{2}}+O\left(n^{2}\right) \leq \mathcal{C}_{\boldsymbol{u}}^{a r}(n) \leq\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

We prove only upper bound (lower bound as well by Frid).

Sturmian Words as Mechanical Words

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{k \alpha+\rho\}\}<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

Sturmian Words as Mechanical Words

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{k \alpha+\rho\}\}<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- from now on, we fix $\alpha \in[0,1) \backslash \mathbb{Q}$

Sturmian Words as Mechanical Words

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{k \alpha+\rho\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

- from now on, we fix $\alpha \in[0,1) \backslash \mathbb{Q}$
- we define $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}, \quad \beta, \gamma \in[0,1)$, length $n+1$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise, }
\end{array} \quad 0 \leq k \leq n\right.
$$

Sturmian Words as Mechanical Words

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{k \alpha+\rho\}\}<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- from now on, we fix $\alpha \in[0,1) \backslash \mathbb{Q}$
- we define $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}, \quad \beta, \gamma \in[0,1)$, length $n+1$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise, }
\end{array} \quad 0 \leq k \leq n\right.
$$

Lemma

(1) $\mathcal{L}_{\boldsymbol{s}_{\alpha}(\rho)}(n)$ and $\mathcal{A}_{\boldsymbol{s}_{\alpha}(\rho)}(n)$ depends only on α (denote $\mathcal{L}_{\alpha}(n), \mathcal{A}_{\alpha}(n)$)

Sturmian Words as Mechanical Words

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{k \alpha+\rho\}\}<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

- from now on, we fix $\alpha \in[0,1) \backslash \mathbb{Q}$
- we define $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}, \quad \beta, \gamma \in[0,1)$, length $n+1$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise, }
\end{array} \quad 0 \leq k \leq n\right.
$$

Lemma

(1) $\mathcal{L}_{\boldsymbol{s}_{\alpha}(\rho)}(n)$ and $\mathcal{A}_{\boldsymbol{s}_{\alpha}(\rho)}(n)$ depends only on α (denote $\mathcal{L}_{\alpha}(n), \mathcal{A}_{\alpha}(n)$)
(2) $w_{\alpha}(\beta, \gamma, n) \in \mathcal{A}_{\alpha} \Longleftrightarrow \exists k, d: \beta=\{\{d \alpha\}, \gamma=\{\{k \alpha+\rho\}\}$

Sturmian Words as Mechanical Words

- lower rotation word $\boldsymbol{s}_{\alpha}(\rho)=s_{0} s_{1} \cdots, \quad \alpha, \rho \in[0,1)$

$$
s_{k}= \begin{cases}1 & \text { if }\{\{k \alpha+\rho\}\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

- from now on, we fix $\alpha \in[0,1) \backslash \mathbb{Q}$
- we define $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}, \quad \beta, \gamma \in[0,1), \quad$ length $n+1$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise },
\end{array} \quad 0 \leq k \leq n\right.
$$

Lemma

(1) $\mathcal{L}_{\boldsymbol{s}_{\alpha}(\rho)}(n)$ and $\mathcal{A}_{\boldsymbol{s}_{\alpha}(\rho)}(n)$ depends only on α (denote $\mathcal{L}_{\alpha}(n), \mathcal{A}_{\alpha}(n)$)
(2) $w_{\alpha}(\beta, \gamma, n) \in \mathcal{A}_{\alpha} \Longleftrightarrow \exists k, d: \beta=\{\{d \alpha\}, \gamma=\{\{k \alpha+\rho\}\}$
(3) $\mathcal{A}_{\alpha}=\bigcup_{\beta, \gamma \in[0,1)} w_{\alpha}(\beta, \gamma, n)$

Planar Representation

- $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise, }
\end{array} \quad 0 \leq k \leq n\right.
$$

Planar Representation

- $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise, }
\end{array} \quad 0 \leq k \leq n\right.
$$

- planar representation
- line $y=\beta x+\gamma$
- closest points below the line
- sequence of • defines $w_{\alpha}(\beta, \gamma, n)$

Question (not open):
Can different sequences of
that came from some lines
define the same word?

Planar Representation

- $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{\{i \beta+\gamma\}\}<\alpha, \\
0 & \text { otherwise },
\end{array} \quad 0 \leq k \leq n\right.
$$

- planar representation
- line $y=\beta x+\gamma$
- closest points below the line
- sequence of • defines $w_{\alpha}(\beta, \gamma, n)$

Planar Representation

- $w_{\alpha}(\beta, \gamma, n)=w_{0} \cdots w_{n}$,

$$
w_{i}=\left\{\begin{array}{ll}
1 & \text { if }\{\{i \beta+\gamma\}<\alpha, \\
0 & \text { otherwise, }
\end{array} \quad 0 \leq k \leq n\right.
$$

- planar representation
- line $y=\beta x+\gamma$
- closest points below the line
- sequence of • defines $w_{\alpha}(\beta, \gamma, n)$
- Question (not open): Can different sequences of that came from some lines define the same word?

Geometric Dual Method

Dual transformation:

- line $I \equiv y=\beta x+\gamma$ maps to point $I^{*}=(\beta,-\gamma)$
- point $p=(\beta, \gamma)$ maps to line $p^{*} \equiv y=\beta x-\gamma$

Geometric Dual Method

Dual transformation:

- line $I \equiv y=\beta x+\gamma$ maps to point $I^{*}=(\beta,-\gamma)$
- point $p=(\beta, \gamma)$ maps to line $p^{*} \equiv y=\beta x-\gamma$

Lemma

(1) $\left.\right|^{* *}=I$ and $p^{* *}=p$.
(2) Point $p=(a, b)$ is below/above/on line $I \equiv y=c x+d \Longleftrightarrow$ point $I^{*}=(c,-d)$ is below/above/on line $p^{*} \equiv y=a x-b$.
(3) Lines I_{1}, \ldots, I_{k} intersect in one point $p \Longleftrightarrow$ points $l_{1}^{*}, \ldots, l_{k}^{*}$ lies on the same line p^{*}.

Geometric Dual Method

Geometric Dual Method

- face of arrangement $\mathcal{D}_{\alpha}(n)$ defines arithmetic factor in $\mathcal{A}_{\alpha}(n+1)$

Geometric Dual Method

- face of arrangement $\mathcal{D}_{\alpha}(n)$ defines arithmetic factor in $\mathcal{A}_{\alpha}(n+1)$

Geometric Dual Method

- face of arrangement $\mathcal{D}_{\alpha}(n)$ defines arithmetic factor in $\mathcal{A}_{\alpha}(n+1)$
- it follows: $\quad \mathcal{C}_{\alpha}^{a r}(n+1) \leq \#$ faces of $\mathcal{D}_{\alpha}(n)$

Counting Faces of $\mathcal{D}_{\alpha}(n)$

Theorem (Euler's Formula)
Let (V, E) be a planar graph with faces F.
Then

$$
\# F=\# E-\# V+1
$$

Counting Faces of $\mathcal{D}_{\alpha}(n)$

Theorem (Euler's Formula)
Let (V, E) be a planar graph with faces F. Then

$$
\# F=\# E-\# V+1
$$

4 types of vertices:
(1) "boundary" vertices
(2) crossings of lines of " 0 "-type
(3) crossings of lines of " 1 "-type
(4) crossings between both types

Counting Faces of $\mathcal{D}_{\alpha}(n)$

(1)
"boundary" vertices
$\#$ new edges $-\#$ "boundary" vertices $=O(\#$ lines $)=O\left(n^{2}\right)$

Counting Faces of $\mathcal{D}_{\alpha}(n)$

(1) "boundary" vertices $\#$ new edges $-\#$ "boundary" vertices $=O(\#$ lines $)=O\left(n^{2}\right)$
(2) crossings of lines of " 0 "-type Bestel, Pocchiola: \# new edges $-\#$ crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$

[^0]
Counting Faces of $\mathcal{D}_{\alpha}(n)$

(1) "boundary" vertices
$\#$ new edges $-\#$ "boundary" vertices $=O(\#$ lines $)=O\left(n^{2}\right)$
(2) crossings of lines of " 0 "-type

Bestel, Pocchiola: \# new edges $-\#$ crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$
(3) crossings of lines of " 1 "-type

Bestel, Pocchiola: \# new edges $-\#$ crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$

Counting Faces of $\mathcal{D}_{\alpha}(n)$

(1) "boundary" vertices
$\#$ new edges $-\#$ "boundary" vertices $=O(\#$ lines $)=O\left(n^{2}\right)$
(2) crossings of lines of " 0 "-type

Bestel, Pocchiola: \# new edges $-\#$ crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$
(3) crossings of lines of " 1 "-type

Bestel, Pocchiola: \# new edges - \# crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$
(4) crossings between both types

- lines of both types: $\quad y=\{i x\}-1, \quad y=\{j j x-\alpha\}-1$,

$$
i, j=0, \ldots, n
$$

- equation $\{\{i x\}-1=\{j x-\alpha\}\}-1$ has $|j-i|$ solutions in $[0,1)$
- $\sum_{i, j=0}^{n}|j-i|=\frac{1}{3} n(n+1)(n+2)=\#$ crossings
- a crossing generates 2 new edges (crossing points are unique)
- \# new edges $-\#$ crossings $=\frac{1}{3} \boldsymbol{n}^{3}+\mathbf{O}\left(\boldsymbol{n}^{2}\right)$

Counting Faces of $\mathcal{D}_{\alpha}(n)$

(1) "boundary" vertices
$\#$ new edges $-\#$ "boundary" vertices $=O(\#$ lines $)=O\left(n^{2}\right)$
(2) crossings of lines of " 0 "-type

Bestel, Pocchiola: \# new edges $-\#$ crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$
(3) crossings of lines of " 1 "-type

Bestel, Pocchiola: \# new edges $-\#$ crossings $=\frac{1}{\pi^{2}} n^{3}+O\left(n^{2}\right)$
(4) crossings between both types

- lines of both types: $\quad y=\{i x\}-1, \quad y=\{j j x-\alpha\}-1$,

$$
i, j=0, \ldots, n
$$

- equation $\{\{i x\}-1=\{j x-\alpha\}\}-1$ has $|j-i|$ solutions in $[0,1)$
- $\sum_{i, j=0}^{n}|j-i|=\frac{1}{3} n(n+1)(n+2)=\#$ crossings
- a crossing generates 2 new edges (crossing points are unique)
- \# new edges $-\#$ crossings $=\frac{1}{3} \boldsymbol{n}^{3}+\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
(5) together

$$
\# F=\# E-\# V+1=\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS.
what Theorem says
$\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)$

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS. what Theorem says

$$
\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Question (not open): Can different sequences of \bullet that came from some lines define the same word?

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS.
what Theorem says

$$
\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Question (not open): Can different sequences of - that came from some lines define the same word?
Answer: Yes, they can.

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS.
what Theorem says

$$
\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Question (not open): Can different sequences of - that came from some lines define the same word?
Answer: Yes, they can.

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS.
what Theorem says

$$
\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Question (not open): Can different sequences of - that came from some lines define the same word?
Answer: Yes, they can.

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS.
what Theorem says

$$
\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Question (not open): Can different sequences of - that came from some lines define the same word?
Answer: Yes, they can.

Symmetry of Faces

what we got

$$
\left(\frac{1}{3}+\frac{2}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

VS. what Theorem says

$$
\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) n^{3}+O\left(n^{2}\right)
$$

Question (not open): Can different sequences of - that came from some lines define the same word?
Answer: Yes, they can.

Remarks

(1) The upper bound is independent of α.

The upper bound is satisfied for larger set of words than Sturmian:

Remarks

(1) The upper bound is independent of α.
(2) Both lower and upper bound is $\sim n^{3}$ (upper is 10.58 larger).

Remarks

(1) The upper bound is independent of α.
(2) Both lower and upper bound is $\sim n^{3}$ (upper is 10.58 larger).
(3) The upper bound is satisfied for larger set of words than Sturmian:

$$
\boldsymbol{s}_{\alpha}(\beta, \rho), \quad \beta \notin \mathbb{Q}, \quad s_{k}= \begin{cases}1 & \text { if }\{\{(k+1) \beta+\rho\}<\alpha \\ 0 & \text { otherwise }\end{cases}
$$

Remarks

(1) The upper bound is independent of α.
(2) Both lower and upper bound is $\sim n^{3}$ (upper is 10.58 larger).
(3) The upper bound is satisfied for larger set of words than Sturmian:

$$
\boldsymbol{s}_{\alpha}(\beta, \rho), \quad \beta \notin \mathbb{Q}, \quad s_{k}= \begin{cases}1 & \text { if }\{(k+1) \beta+\rho\}<\alpha, \\ 0 & \text { otherwise }\end{cases}
$$

(4) Can be generalized to 3iet with permutation $0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 0$.

References

(1) J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput. 3 (1993) 349-355.
(2) J. Cassaigne, A. Frid, On the arithmetical complexity of Sturmian words, Theoret. Comput. Sci. 380 (2007) 304-316
(3) A. Frid, A lower bound for the arithmetical complexity of Sturmian words, Siberian Electron. Math. Rep. 2, 14-22

[^0]: together

