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Beta-expansions of rational numbers in quadratic Pisot bases
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ToMAS HEJDA (Praha) and WOLFGANG STEINER (Paris)

1. Introduction and main results. Rényi S-expansions [Rén57| pro-
vide a very natural generalization of standard positional numeration systems
such as the decimal system. Let 8 > 1 denote the base. Expansions of num-
bers z € [0,1) are defined in terms of the S-transformation

T:[0,1) = [0,1), =~ fBx— |Bz].

The expansion of x is the infinite string z1xex3--- where z; = LﬁTj_l:zJ.
For g € N, we recover the standard expansions in base (3, and the [-ex-
pansion of x € [0,1) is eventually periodic (i.e., there exist p,n such that
Tpyp = x, for all k > n) if and only if x € Q. This result was generalized to
all Pisot bases by Schmidt [Sch80], who proved that for a Pisot number g
the expansion of z € [0,1) is eventually periodic if and only if x € Q(p).
Moreover, he showed that when 32 = a3 + 1, then each = € [0,1) N Q has
a purely periodic S-expansion.

Akiyama [Aki98| showed that if 8 is a Pisot unit satisfying a certain
finiteness property then there exists ¢ > 0 such that all x € Q N [0,¢)
have a purely periodic expansion. If 3 is not a unit, then a rational number
p/q € [0,1) can have a purely periodic expansion only if g is coprime to the
norm N (B). Many Pisot non-units have the property that there exists ¢ > 0
such that all rational numbers p/q € [0, c) with ¢ coprime to N(/) have a
purely periodic expansion. This leads to the following definition:

DEFINITION 1.1. Let 8 be a Pisot number, and let N(3) denote the norm
of 8. We define v(p) € [0, 1] as the maximal ¢ such that all p/¢g € QN [0,¢)
with ged(g, N(8)) = 1 have a purely periodic S-expansion. In other words,

v(B) = inf{p/q € QN 0,1) : ged(q, N(B)) = 1,

the S-expansion of p/q is not purely periodic} U {1}.
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The question is how to determine the value of v(3). Moreover, knowing
when y(3) = 0 or 1 is of interest. Values of () for whole classes of numbers
as well as for particular numbers have been given [Aki98, IABT08. [AS05,
MS14, [Sch80]. Periodic greedy expansions in negative quadratic unit bases
were studied in [MP13].

It is easy to observe that the expansion of x is purely periodic if and only
if x is a periodic point of T, i.e., there exists p > 1 such that TPz = x. The
natural extension (X,7) of the dynamical system ([0,1),7") (with respect
to its unique absolutely continuous invariant measure) can be defined in an
algebraic way ( Several authors contributed to proving the following
result: A point x € [0,1) has a purely periodic -expansion if and only if
x € Q(p) and its diagonal embedding lies in the natural extension domain X’
The quadratic unit case was solved by Hama and Imahashi [HI97], and the
confluent unit case by Ito and Sano [ISO1, IS02]. Then Ito and Rao [IR05]
resolved the unit case completely using an algebraic argument. For non-unit
bases (3, one has to consider finite (p-adic) places of the field Q(/3). This
allowed Berthé and Siegel [BS07] to extend the result to all (non-unit) Pisot
numbers.

The first values of () for two particular quadratic non-units were pro-
vided by Akiyama et al. [ABT08|. Recently, Minervino and the second au-
thor [MS14] described the boundary of X' for quadratic non-unit Pisot bases.
This allowed them to find the value of v(f3) for an infinite class of quadratic
numbers. Namely, let 3 be the positive root of 32 = aB + b fora > b > 1
two coprime integers; then

-8
V(B) = B2 —b?
0 otherwise
(note that this value is 1 if and only if b = 1).

The purpose of this article is to generalize this result to all quadratic Pisot
numbers § with N(3) < 0. (Note that if N(8) > 0, then 8 has a positive
Galois conjugate 8 > 0 and v(8) = 0 by [Aki98, Proposition 5|.) To this end,
we define S-adic expansions (not to be confused with the Rényi S-expansions)
similarly to p-adic expansions with p € Z (see also .

if a > b(b—1),

DEFINITION 1.2. Let 8 be an algebraic integer. The S-adic expansion
of x € Z[p] is the unique infinite word h(z) = ugujuz--- such that w, €
{0517>|N(5)’ - 1} and

n—1
x— > wB €p LB forallneN.
i=0
For 8 an algebraic unit, all numbers have -adic expansion 0“ and the fol-
lowing results just state that () = 1, which we already know from [Sch80].
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THEOREM 1. Let 8 be a quadratic Pisot number satisfying 8% = a8 + b
with a >b>1. Then

0 if supjez Prij—p)(B') > B
or infjeZ Ph(j) (,6/) < —1,
Y(B)={B—a if supjez Pn(j—p)(8) € (28 —a—1,0]

and infjez Ph(j) (B,) > 6 —a — 1,
|1 +infjez Py (8')  otherwise,
where Pyguyuy-(X) = 3,50 un X"

In many cases, we obtain the following direct formula (which we conjec-
ture to be true for all a > b > 1):

THEOREM 2. Let 8 be a quadratic Pisot number satisfying 8% = a8 + b
fora >b> 2. Suppose either a > 1+2‘/‘F’b, ora=", or ged(a,b) =1. Then

(1.1) +(8) = max{u L+ inf Ph(j)(,B’)}.

The infimum in (1.1)) can be computed easily with the help of Propo-
sition below. For a/b € 7Z, Proposition provides an even faster al-
gorithm, and we are able to give a necessary and sufficient condition for

v(B) =1:
THEOREM 3. Let B be a quadratic Pisot number satisfying > = a3 + b
with a > b > 1 and such that b divides a.

(i) v(B) =1 if and only if a > b* or (a,b) € {(24,6),(30,6)}.
(ii) If a =b> 3 then y(5) = 0.

This paper is organized as follows: In the next section, notions involving
words, representation spaces and [S-tiles are recalled, and properties of S-adic
expansions are studied. Section [3| connects tiles arising from the S-transfor-
mation and the value (/) in order to prove Theorem |I} The proof of Theo-
rem [2]is completed in Section[d] together with that of Theorem 3] Comments
on the general case are in Section [5] along with a list of related open ques-
tions.

2. Preliminaries

2.1. Words over a finite alphabet. We consider both finite and in-
finite words over a finite alphabet A. The set of finite words over A is de-
noted A*. The set of all (right) infinite words over A is denoted A“, and it is
equipped with the Cantor topology. An infinite word is (eventually) periodic
if it is of the form vu® = vuuw - --; a finite word v is the pre-period and a
non-empty finite word wu is the period; if the pre-period is empty, we speak
about a purely periodic word. A prefiz of a (finite or infinite) word w is any
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finite word v such that w can be written as w = vu for some word u. We
denote by u[n] the prefix of length n of an infinite word wu.
To a finite word w = wows - - - wi_1 we assign the polynomial

k—1
Py(X) = Zwixi.
=0

Similarly, Py (X) = Y ,50uiX" is a power series for an infinite word u =
uouiug -+ - - .

2.2. Representation spaces. The following notation will be used: For
a,b € Z, we write a L b if a and b are coprime. Moreover, for b > 2 we set
Zy =A{p/a:p,q € Z, q L b}.

We adopt the notation of [MS14], but we restrict ourselves to 8 being
a quadratic Pisot number. Let K = Q(3). Since f is quadratic, there are ex-
actly two infinite places of K; they are given by the two Galois isomorphisms
of Q(B): the identity and = — 2’ that maps f to its Galois conjugate. Both
these places have R as their completion.

If 8 is not a unit, then we have to consider finite places of K as well.
We define K to be the direct product ring Hp 1(8) K,, where p runs through
all prime ideals of Q(5) that divide the principal ideal (5) and K, is the
associate completion of K; for a precise definition, we refer to [MS14) §2.2].
The direct products K = K x K’ x K; and K' = K’ x K; are called
representation spaces. We consider the diagonal embeddings

5:QB) = K, o (x,2',2¢), and §:Q(B) =K', z— (2, x¢),
where x¢ is the vector of embeddings of x into the spaces Kj,. We set
Sg={xs:x €S} forany SC K.

In particular, we consider Z[fS]¢, which is a compact subset of K. Since
multiplication by S is a contraction on K¢, we find that SfZ[3]f — {0¢} as
n — oo.

If 5 is a unit, we write Ky = Z[fB]s = {0¢} for consistency, and we have
xg =0 for all z € K.

2.3. Beta-tiles. For z € [0, 1), we define the (reflected and translated)
B-tile of x as the Hausdorff limit

Q(z) == lim & (z — gFTF(z)) C K.
k—ro0
Note that the standard definition of a S-tile for z € Z[3~N[0,1) is R(x) :=

8 (x) — Q(x) (see e.g. [MS14]). For a quadratic Pisot number f satisfying
B% = af + b with a > b > 1, we have Q(z) = Q(0) for x < § — a and
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Q(x) = Q(S — a) otherwise. The dynamical system ([0,1),7) admits (X,T)
as its natural extension, where

X = ([0,—0a)x Q) U([B—-a,1)xQ(B—-a)) CK

is a union of two suspensions of S-tiles and T (z,y) = 0(8)(z,y) — d(|Bx]).
The natural extension domain is often required to be a closed set, but here
it is more convenient to work with the one above, since the following result
holds:

ProposiTiON 2.1 ([HI9T, IR05, BS07]). For a Pisot number 3, a num-
ber x has a purely periodic B-expansion if and only if v € Q(5) and 6(x) € X.

2.4. Beta-adic expansions. In Definition B-adic expansions are
defined on Z[3]. By Lemma below, we extend this definition to the clo-
sure Z[f]¢ similarly to the p-adic case. To this end, let

D: Z[Bls — Z[Blr, x> B (v —d(2)),
where d(z) is the unique digit d € A = {0,1,...,|N(8)| — 1} such that
B (x — dy) is in Z[B)s. Such a d exists because Z[B] = A + BZ[B]. It is

unique because (c+ BZ[B])¢ N (d+ BZ[B])s # O implies (B~ (c—d))¢ € Z[Bs,
and thus ¢ = d (mod N(f)) by the following lemma:

LEMMA 2.2 ([MS14, Lemma 5.2 and (5.1)]). For each x € Z[3~ ']\ Z|B]
we have x¢ ¢ Z[B)s. There exists k € N such that Z[B~]NB*O C Z[B], where
O is the ring of integers in Q(3).

LEMMA 2.3. The B-adic expansion map hg : Z[Bls — A% defined by
he(2) = upuiug -, where w; = d(D"(2)),
is a homeomorphism. It satisfies h¢(xf) = h(x) for all x € Z[5].

Proof. If § is a unit, both sets are singletons, hence h¢ is certainly a
homeomorphism.

In the general case, the map hy is surjective because hi(Py(5f)) = u
for all u € A“. It is injective because h¢(z) = w = upujusg - - - implies that
z € S wiB + BRZIB)s for all n, thus 2 = Py ().

Since O is open and Z[3~!] = K, we know from Lemma that
Z[B)s = UzeZ[,B] z¢ + BEO; for some k € N, and therefore it is an open set
as well. Then the preimage h; ' (vA“) = P,(B;) + BPZ[B]¢ is open for any
v € A*. As the cylinders {vA“ : v € A*} form a base of the topology of A%,
the map hy is continuous.

Its inverse h; ' is continuous because BFZ[A]f — {0} as n — oo.

For x € Z[f], the equality h¢(x¢) = h(z) follows from the fact that
B~ Ha —d(zr)) € Z[B]. =
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Note that We can also identify the set Z[5]s with the inverse limit space
h% m Z[5]/B"Z[5]. Indeed, the map

n—1

KIuguiug -+ -+ (61752){37 .- ')7 where gn = ZUZBZ,

i=0
is an isomorphism A* — 1'&12[5] /B"Z[B], and the following diagram com-
mutes:

Z[Bl¢ = Z[B]s
th hlg
A (shift) Av

f{g o=

lim Z[5)/6"2(8) —— lim Z[5]/ 5" 23]

3. Beta-tiles and the value (/). The goal of this section is to prove
Theorems(1]and[2] using the connection between f-tiles and the value of v(83).
First we prove the following lemma about the closures of Z and Zp in K;:

LEMMA 3.1. We have (Z)¢ = (Zp)t = (Zp N [c, d])s for all ¢ < d.

Proof. We have (Zp); = (Zy N [c,d])s by |[ABT08, Lemma 4.7]. Clearly
Z C Zy, whence (Z); C (Zp)¢. We will prove that (Zy) C (Z)¢, that is,
every x/q € Zy for x,q € Z and ¢ L b can be approximated by integers.
For each n € N, there exists ¢, € Z such that ¢,¢g = 1 (mod b"). Then
T = (1-— qnq)i € éb”Z - %B”Z[B], therefore (g,x)f = (2/q)s. w

Proof of Theorem[1l By Definition Proposition [2.1|and as §(1) ¢ X,
we have

v(B) =inf{z € Zy: x>0, é(x) ¢ X}.

For 2 € QN [0, 8 — a), the condition §(z) € X is equivalent to ¢’'(z) € Q(0);
forx € QN [B —a,1), it is equivalent to ¢'(z) € Q(8 — a).

We recall the results of [MSI14, §9.3|, where the shape of the tiles is
described. The intersection of Q(z) with a line K’ x {z} is a line segment for
any z € Z[B]r and it is empty for all z € K¢\ Z[B]r (see Figure[l)). Let 9~ Q(z)
denote the set of the segments’ left end-points, and similarly 97 Q(z) is the
set of the right end-points. For x € {0, 5 — a}, set

l, =supm (0 Q(x)NY) and r,:=infr'(6TQ(x)NY),
where Y = K’ x (Zp)f and 7’ denotes the projection 7': K’ x K; — K/,

(y,2) — y. Then all p/q € Zy in [lp,r0] N[0, 8 — a) have a purely periodic
expansion, and so do all p/q € Zy in [lg_q,78-4] N [ — a,1). Outside these
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O+ Q(O)

l-as7-al 5~ g, 1) K

Fig. 1. The tiles Q(0) and Q(B8 — a) for B = 1 + /3. The (horizontal) stripes illustrate
the intersection of Y = K’ x (Z); with the tiles.

two sets, those p/q € Zy that do not have a purely periodic expansion are
dense, since the points §'(p/q) are dense in Y by Lemma [3.1] Therefore, v(3)
depends on the relative position of the above intervals (see Figure [1f) in the
following way:

(3.1)
0 iflp >0 o0rrg <0,
o if o <0 and 9 € (0,5 — a),
B =15_4 itly<0,70>p8—aand f—a¢ [l5-a7s-dl,

min{rg_q,1} iflg <0,70 > S —aand §—a € [lg—_q,75-4q)-
In the rest of the proof, we will show that

(3.2) lo=1lg—a—1=—B+sup Pyi_p(8),
JEZL
(3.3) o = Tg-a = L+ inf Py ().

As infjcz Pp(jy(B') < Pro)(8') = 0, we see that (3.1)) implies the statement
of the theorem.
We use results of [MS14, §§8.3, 9.2 and 9.3|, namely equations (8.4)
and (9.2) there, which read:
z€R(x)NR(y) ifand only if 2= () + Pu(8'(8)),

where uw = uguius - -+ is an edge-labelling of a path in the boundary graph
in Figure [2 that starts at the node y — x; and

OR(z) = (R(z) NR(z + B — |z + B])) U (R(z) "Rz — B — [z - B])),
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0,1,...,b—1 a—b+1,...,a
e —_—
_ |
0,1,...,b—1 a—b,...,a—1

Fig. 2. Boundary graph for quadratic S-tiles [MS14, Fig. 6]. Each arrow in the graph
represents exactly b edges.

where the first part is the left boundary R~ (x) and the second part is the
right boundary R (z). Therefore

9" R(0) = 0"R(B —a) = R(0) NR(B — a) = {Pu(d'(B)) : u € (AB)*},
O"R(O0)=R(a+1-B)NRO) ={8(a+1—B)+ Pu(d(B)) : u € (AB)“},
O R(B—a)=R(B—a)NR(28 - |28])
= {0"(B — a) + Pu(d'(B)) - u € (AB)*},
where B := {a—b+1,a—b+2,...,a}. We have
{Pu(5'(8)) : u € (AB)*} = {P(p-1)a)~ (0'(8)) — Pu(d'(B)) : u € A*}
= —0'(1) = {Pu(0"(B)) 1 uw € A7},
since A=b—1—Aand B=a— A. Because Q(z) = ¢'(z) — R(x), we have
0T Q(z) = ¢'(x) — OFR(x). We obtain
07Q(0) = 0'(8 — a) + {Pu(d'(B)) : u € A”},
e §'(B—a+1)+{Pu(0'(B)) : u € A”},
97 Q(0) =97 Q( 0'(1) + {Pu(0'(8)) 1 u € A*}.
We have
5(1)+ Pu((B) €Y & 1t + PulBr) € Zs
& Pu(Br) €Z¢ < u € he(Zy),
because h¢(Py(8)) = u and hy is a homeomorphism by Lemma [2.3] Then,

since the map Z¢ — K', 2 +— Py, (,)(f'), is continuous, we get

. 1o+ _ . N . N7
infr'(07Q(x)NY) =1+ Zlélsz Pr(»(B) =1 +J11€1£Ph(])(5 ).

f-a)=
f-a)=

This proves (3.3)). Similarly, §'(8 — a) + P, (6'(8)) € Y if and only if u €
h¢(Z¢ — Br), therefore

sup (0~ Q(B—a)NY)—1=sup7' (0~ Q(0)NY) = 6'—a+§ulz) Prj—p)(B).
j€

Since ' —a = —[3, this shows (3.2). =
Proof of Theorem@ case a > LQ\/‘F’Z). Since 8’ < 0, we have
b—1

sup Pp(i_ < sup P,(B8) =P _1me(8)= ————.
Sup P m(ﬂ)—uefw w(B) = Pp-1)0)=(5) = (7)
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We will show that this quantity is < 25 — a — 1. First, we derive, using
() =aB +b, f=a—p and 1 — (p')? > 0, that it is equivalent to

(3.4) a+ab+ B (a® +a+2b—2)>0.
We know that § < a + 1, therefore
b _ala+1)+0b , b (a+1)b
b a+6> a+1 and f B> a?+a+b

Further, a® + a + 2b — 2 > 0, therefore we estimate

ab?(($)% =4 —1) +b*((£)* +2%¢ —2) +2b
a?+a+b '

When a/b > (14+/5)/2, all three terms in the numerator are positive. Since

the denominator is also positive, we get sup;cz Pr(j—g)(8) < 28 —a — 1.

Theorem (1| then implies (|1.1]). =

The proof of the case a L b of Theorem [2| was given in [MS14, §9]. The
case a = b is handled in the next section on page because it falls under
the case when b divides a.

a+ab+p' (> +a+20—2) >

The following proposition shows how to compute the infimum in Theo-
rem [2]and thus the value of v() in alot of (and possibly all) cases. Comments
on the computation of (/) by Theorem |I| are in Section |5} We recall that
u[n] denotes the prefix of u of length n.

PROPOSITION 3.2. Let 32 = af3+b with a > b > 2. Then for eachn € N,

. ’ . / nn b—1 /
(85) i Puy(F) € min  Pagypmi (F) + (5) 1—7(6’)” 1.

LEMMA 3.3. Let z,y € Z[B] with x —y € b"Z[B]. Then h(z)[n] =
h(y)[n]-

Proof. Since b = % — a3 € BZ[A], we have x — y € B"Z|[B]. Let h(x) =
uouy - --. Then x — Z?:_ol u;3’ € B"Z]B] and so y — Z?:_ol u; € BZIBI,

which means that wug - - - u,—1 is a prefix of h(y). =

Proof of Proposition . Set pn = minjeqo1,.. pn—1} Pr(j)n(8’). The
statement actually consists of two inequalities, which will be proved sepa-
rately. Let j € Z. Since h(j)[n] = h(j modd™)[n] by Lemma [3.3| and since
B < 0, we have

n b—1 e
Priiy(B") = Prjyinpo-1)(8) = pin + (8') HW if n is even,
b—1

Ph(j) (,3/) Z Ph(j)[[n]]((bfl)O)“ (,6/) Z Hn + (5,)nw if n is odd.
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To prove the other inequality, let & € {0,...,b™ — 1} be such that p, =
Priying (B'). Then

b-1 e

Prey(8') < Pry ) (o—1)0)= (B') = pn + (Bl)nl—i(ﬁ’)? if n is even,
b—1 e

Ph(k) (5,) < Ph(k)[[n]](O(b—l))w (ﬂ,) = Up + (ﬁ/)n+11—7(6,)2 if n is Odd,

this provides the upper bound on the infimum. =

4. The case where b divides a. In this section, we aim to prove The-
orem |3, which deals with the particular case when b divides a. Table[1| shows
whether «v(8) is 0, 1 or strictly in between, for b < 12 and a/b < 15. The
first non-trivial values are listed in Table[2] The algorithm for obtaining these
values is deduced from Theorem [2| (which covers all the cases when a/b € Z
since then either a = b or a > 2b > 1+T‘ﬁb), and the following proposition,
which improves the statement of Proposition [3.2

Table 1. The values of v(f3) for b dividing a. The star ‘’ means that the value is strictly
between 0 and 1.

a/b=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b=1 (1|11 |1 |1|1f1|1|1j1|1{1]1|1]|1
2 |« |11 (111111111111
310} «(1|1|1|1|1|1f1f1f1f1]j1]1]|1
410|221 111111111
510« |~|~|1|1(1|1|1}j1|1|1]1|1]|1
6 |0 «|«|L1|1 |22 221|111 ]1]1]1
T1O ]« «|*«|*«|«|2 |22 [1|1|(1]1]1]1
81O | x|+ | | *|*|~|2 21|11 ]1]1]1
QO *« |« ||+ *|x|*]2]2|21]1]1|1]|1
10 O« |« |« | *|*|*|*|=|2|2|1]1]1]1
1110 O e I I I O B O R A A |
12 10 P I O I A |11 1]1

PROPOSITION 4.1. Let 82 = a3 +b with a > b > 2 and a/b € Z. Then
for each n € N,

b—1
. il
;1612 Pri(B) €

3 P . / / 2n7 / )

LEMMA 4.2. Let 52 = cbB + b. Let x,y € Z[B] with x —y € b"Z[f] for

some n € N. Then h(z)[2n] = h(y)[2n]. Moreover, for all x € Z[5] and
d € A there exists y € x + 0" A such that h(y)[2n+1] = h(x)[2n]d.
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Table 2. Numerical values of ~(8), where 82 = aB + b, that correspond to the
first % in Table[Il

a b (8) a b (8)
2 2 0.91480304419665 - - - 126 0.73611417827238 - - -
6 3 0.99296356010177- - - 18 6 0.99389726639536 - - -
8 4 0.93354294467597 - - - 14 7 0.58490653345818 - - -
12 4 0.99989778900097 - - - 21 7 0.94452609461867 - - -
28 7 0.99798478808267 - - -
10 5 0.83415079417546 - - - 35 7  0.99998604176743 - -
15 5 0.99530672367191 - - - 42 7 0.99999999999971 - - -

20 5 0.99999990711058 - - -

Proof. We have 82 = b(cf+1) € bZ[3] and b = % —c(1+c?b) 3 +c?B* €
82 + BLIB) C FPZI), whence FPZ[S] = bZIB] and FPZ[F] = W'Z[S] for
all n € N. Following the lines of the proof of Lemma [3.3] we find that if
x —y € b"Z[P] then h(x) and h(y) have a common prefix of length at
least 2n.

To prove the second statement, write ugui--- = h(x). Since b" €
B2 + B2 FL7Z[8], we conclude that uguy - - - ug,_1d is a prefix of h(z + eb™)
for any e = d — ug, (mod b). =

Proof of Proposition [{.]. We follow the lines of the proof of Propo-
sition [3:2] for n even. The lower bound is the same in both statements,
therefore we only need to prove that infjcz Ppj)(8') < Phk)p2np(8'), Where
k= argminjcro 1, pn—1} Pr(j)[en(8’). For each m € N, there exists k, € Z
such that h(ky,)[2n+2m] € h(k)[2n](0.A4)™ by Lemma [4.2] Then

Jllgg P (B) < Jmf Pr(,)(8') < nf Phe)njozm((6-1)0) B
= Ppyny(6)- =

REMARK 4.3. We have

(4.1) L = je{o,{?}gn—l} Pr(i)2n] (8) = jeJn_HllJirrgn—lA Prii)en] (8",
where
JO = {0},
b—1
T = {J’ € Jn1 + 0" A Prgypan (B) < pim + ’ﬁ/|2n+11—(5/)2}'

To verify (4.1]), we first show that the sequence (jiy, )nen is non-increasing. Let
j€{0,1,...,0" — 1} be such that u, = Py(j)j2s)(8')- Then by Lemma
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there exists d € A such that h(j+db™)[2n+1] = h(j)[2n]0, whence pn41 <
Prjtapryfan+2)(B') < bin.

Suppose now that j € {0,1,...,b" — 1} \ (J,—1 + " 1A). Then there
exists m < n such that Phjyom)(6) > ttm + |87 b2l therefore

' =@
Prii)izn] (B') > tm > pin.

EXAMPLE 4.4. As an example, the computation of () for f =1+ /3,
the Pisot root of 82 = 28 + 2, is visualized in Figure [3| For each step of
the algorithm, the value of «(3) lies in the leftmost interval. Already in
the 5th step we obtain (8) € [0.900834,0.970552], therefore it is strictly
between 0 and 1. Note that in the 9th step we find that pg = Py (8') with
£ = 001100010101010001, and (8) € [0.910126652, 0.915876683]. In the
40th step, we deduce that

(19 = 001100(01)*000100(0001)*(00)2(01)°(00)(01)®(00)201
and () ~ 0.914803044.

(empty prefix)

00

1

10

0000 === __ 1011
000000 === __ ;0919

001110

000000 00  m—
001100071 m— 00000011

T —— 00110010
0000000000 ==__ 00010

" — 0000001110
0011000101 == "0 0111

00 1200%05)1082 %0102 = 000000000011
001100010110
00110001010101 = 4110901011011

0011000101010100 601100 0101100111
|

> 00 110001010101 1109 11000101 100100 1
-001100010110011111

0
| 0000001100 4
0
Fig. 3. The computation of v(1 4+ v/3). By a thick line with a bold label we denote the

intervals that we ‘keep’ (these arise from numbers in J, ), by a thin line the ones that we
‘forget’. The labels next to the intervals are the corresponding prefixes h(j)[2n].
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Proof of Theorem@ casea =b. Takea =b > 4. Then b= %2+ (b—1)3>
+ (2b + 1)B%, therefore h(b)[4] = 001(b—1). According to Proposition
we have
A= Jlfelg Priy(B) < Poorp—1y(B) = (B)* + (b—1)(8)*.
For a = b > 5, we use the estimate —f’ € (b%,l) to deduce that A <

1- b(z(f:)g) < —1, therefore v(3) = 0. For a = b = 4, we have Pyy3-1)(8) =
—1.0193, thus A < —1.
When a = b = 3, we verify that h(21)[12] = 001200020201, and Propo-
sition yields A < Pyo1200020201 (B/) ~ —1.0726 < —1, therefore 'y(ﬁ) =0.
When a = b = 2, we can follow the lines of the proof of the case a >

(14+/5)b/2, because we observe that ([3.4) is satisfied: 6483’ ~ 0.1436 > 0. =

The proof of Theorem [3]is divided into several cases.

Proof of Theorem @ case a > b®. Any j € Z\ {0} can be written as
Jj =b"(jo+j1b), where n € N, jo € A\ {0} and j; € Z. Then h(j)[2n+1] =
0%"jo becase b" € 52" 4 32" +17[3], whence

Priy(B') = Pr(jyi2n+11(-1)0)+ (8") = Pozni(p—1)0)= (8')
/

(1 CIEY o O 0)
where the last inequality was already proved in |[MSI14, Theorem 6]. As
h(0) = 0¥, we have Py (8') = 0. From Theorem [2| we conclude that
Y(B) = 1 +infjez Pp(jy(B') = 1. =

The remaining cases of the proof of Theorem [3| make use of the following

relations. Let ¢ := a/b € Z. Then B% = 1+1€B € 1—cB+c23% - 333+ B4Z1p),
and more generally,

& 1 2
(4.2) 5()2" € 1—ncf+ (n;— )6252— (n;— )6353—1—,842[5] for any n € N.
For j = (jo + 71b)0™ with n € N and jo,j1 € Z we have ﬁjﬁ = joé’% +

jﬁ%’%;, therefore
' . . C(n+1 ,
(4.3) ﬁ € Jjo — joncp + (Jo( 5 >62 + ]1)52
. (n+2 .
- <Jo< 3 >03 +J1(n + 1)0) B3 + przlp].

Proof of Theorem@ case B?> =308 +6. We have b =6 and ¢ = 5. As in
the previous case, we will show that Pp;) () > 0 for all j € Z. Write j # 0
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as j = b"(jo +j1b) with jo € A\ {0} and j; € Z. Then h(j) = 0> uguius - - -
for some uguy - -+ € A¥ with ug = jo, and Pp;y(8') = (8)*" Pugu,.(8'). We
consider the followmg cases:

o If UuQ Z 2, then P’uour--(ﬁ,) Z P2(50)w (,8/) > 0.

o If ugp =1 and uy <4, then Pyyy,..(8") > Piyos)«(8) > 0.

e If wgu; = 15, then implies that jo = 1 and —jonc = 5 (mod 6),
therefore n = —1 (mod 6) and n = 6n; — 1, i.e., —joncB = 55 — 30n15 €
58 — 5n153 + B*Z[B]. Therefore

62 €E1+58+ ((6;1>52+j1>52

_ ((6n1 + 1)621(6m — 1)53 +30n1j1 + 5n1)B3 + B'Z[3).

The coefficient of 5% is congruent to 0 modulo 6 regardless of the values
of ny and jl. This means that us = 0. Thus P15u20(05)w (6/) 2 P1500(05)w (/6/)
> 0.

Therefore Pp;y(f) >0 forall j€Z. =

Proof of Theorem@ case 32 = 243 + 6. We have b = 6 and ¢ = 4. We
use the same technique as in the case 3% = 303 + 6.

o If ug Z 2, then P’uouy--(ﬁ,) Z P2(50)w (,8/) > 0.

o If uy = 1 and (5% S 3, then Pugzu---(ﬁl) 2 P13(05)w (ﬂ/) > 0.

e Since c is even, so is u; = —jonc (mod 6), therefore ugu; # 15.

e If ugu; = 14, then gives jo = 1 and —jonc = 4 (mod 6), i.e
n = —1 (mod 3) and n = 3n; — 1, whence —joncfs = 48 — 128 €

45 —2n1 8% + B*Z[B]. We derive that

ﬂ2” € 1+ 46 + (some integer)3? — (144n3 — 30n; + 12n171) 5% + BAZ[B].

As above, we get uz = 0 regardless of the values of n; and ji, thus

Puguy—(8") = Prago(os)y~ () > 0. =

Proof of Theorem[3, case ¢ := a/b < b and ¢ ¢ {4,5} when b = 6. Let
n = [ﬁ] From (4.2)), the S-adic expansion h(b") starts with 02"1(nb—nc).
f % ¢ Z, then nb — nc > ¢ and thus Piinp—ney(B') <1+ (c+1)8" <0,
by using 3 = —% < —ﬁ < - c+1 By Proposition this proves that
~v(B) < 1if ¢ is not a multiple of b — c.

Assume now that ;% € Z, i.e., n = ;= For j == b" — (";1)0217"“, we

see by that
62” €1—neB— <<” . 2>c3 - (" s 1>c3(n + 1))53 + 8'Z/8)].
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Since —nec = c—nb € c—nB%+ B3Z[B] and (n+1)c = nb € BZ|B], we obtain

gmetrar-(("57)e+n)s + p'zis)
If ("£?)¢® +n # 0 (mod b), then
(5/)2n+2 N2n+3 __ 21 25 — b2
T‘F(ﬁ) * _(/8) * W

since 1+ ¢B = (8')%/b and B < a + 1 < b?, therefore v(3) < 1 by Proposi-
tion (.11

It remains to consider the case ("+2)c +n =0 (mod b), i.e

Ph(j)[[2n+4]](5/) < Ppnyen (8') = < 0,

b 2
n=-— n(n6+) n (mod b),
because (n + 1)c = nb. Multiplying by b — ¢ gives
b 2
c= _71(716—}—)63 (mod b).

Note that W =(b—c¢) ("+2) € Z. We distinguish four cases:

(i) If 6 L b, then ¢ = 0 (mod b), contradicting 1 < ¢ < b.

(ii) If 2|b and 310b, then c is a multiple of b/2, i.e., c=b/2, n=1. Asn is
also a multiple of b/2, we get b = 2, thus ¢ = 1. For 5% = 23 + 2, we
already know that () < 1 (see Example [1.4)).

(iii) If 3|b and 21b, then ¢ and n are multiples of b/3. For ¢ = b/3 we have
n ¢ Z. For ¢ = 2b/3, we have n = 2, thus b € {3,6}. However, b = 6
contradicts 21b, and b = 3 (i.e., ¢ = 2) contradicts (n+2)c +n =0
(mod b).

(iv) If 6|b, then ¢ and n are multiples of b/6, thus ¢ € {b/2,2b/3,5b/6},
n € {1,2,5}. If n = 1, then b = 6, thus ¢ = 3, and (”;2)03 +n#0
(mod b). If n = 2, then b € {6,12}; we have excluded b = 6, ¢ = 4;
for b = 12, ¢ = 8, we have (n;r2)c3 +n # 0 (mod b). If n = 5, then
b € {6,30}; we have excluded b = 6, ¢ = 5; for b = 30, ¢ = 24, we have
(”;2)03 +n#0 (mod b). m

5. The general case. In the general quadratic case where 1 < ged(a, b)
< b, the conditions of Theorem [2 need not be satisfied. This means that we
have to rely on the more general Theorem , i.e., to compute infjez Pp(j)(5')
and sup,cz Pr(j—p)(8)-

We can derive, in a similar manner to Proposition 3.2} that for all n € N,

b—1
5.1 P (8) € Pt g (8) () ————[8'1].
(5.1) sup Fhg 5) () seo e, Pui-p)l 1(8)+(8) 1_@,)2[5 ]
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Let now s, > 1, for n € N, denote the smallest positive integer such that

€ B"Z[S], and 7, == s,/sp—1. Then z,y € Z have a common prefix of
length n if and only if y — x € s,Z. Therefore, in both and we
can take {0,1,...,s, — 1} instead of {0,1,...,b" — 1}. Moreover, following
Remark we can further restrict to the sets

Jo=A{0}, Jy={-5},

. 1
e {J € Jn1+5n1{0, L, rn = 1} : Py (8) < pn+ 15" 1+6/}
J7/1 = {jEJn—1+Sn—1{O717., _1} Ph Hnﬂ(ﬂ) |5’ 1+B/}
where
"= mi P n ! )
g Je{0,1, bn 1} h(j)[n] (B)
Vp = max Ph(]—ﬁ)ﬂnﬂ (B/)

je{0,1,....bn—1}

We conclude by several open questions that arise in the study of rational
numbers with purely periodic expansions:

(A) Prove or disprove that v(8) = 1 for a quadratic Pisot number § > 1
satisfying 8% = a8 + b if and only if a/b € Z and either a > b? or
(a,b) € {(24,6),(30,6)}.

(B) For which quadratic 5 do we have () = 07 Can we drop the re-
strictions on a and b in Theorem More specifically, is it true that

< (1 ++/5)b/2 implies v(B) = 0?

(C) What is the structure of the prefixes of $-adic expansions of integers for
a general quadratic 57

(D) What about the cubic Pisot case? Akiyama and Scheicher [AS05] showed
how to compute v(3) for 8 ~ 1.325 the minimal Pisot number (or Plastic
number) with 43 = 8+1. Loridant et al. [LM™ 13| gave the contact graph
of the S-tiles for cubic units, which could be used to determine (/) for
the units, in a similar way to what Akiyama and Scheicher did. The
consideration of the (-adic spaces could then allow the results to be
extended to non-units as well.
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Abstract (will appear on the journal’s web site only)

We study rational numbers with purely periodic Rényi S-expansions. For
bases f3 satisfying 8% = a8 + b with b dividing a, we give a necessary and
sufficient condition for all rational numbers p/q € [0,1) with ged(g,b) = 1 to
have a purely periodic S-expansion. We provide a simple algorithm for deter-
mining the infimum of p/q € [0, 1) with ged(g,b) = 1 and whose S-expansion
is not purely periodic, which works for all quadratic Pisot numbers f.
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