Beta-expansions of rational numbers in quadratic Pisot bases

by
Tomáš Hejda (Praha) and Wolfgang Steiner (Paris)

1. Introduction and main results. Rényi β-expansions Rén57] provide a very natural generalization of standard positional numeration systems such as the decimal system. Let $\beta>1$ denote the base. Expansions of numbers $x \in[0,1)$ are defined in terms of the β-transformation

$$
T:[0,1) \rightarrow[0,1), \quad x \mapsto \beta x-\lfloor\beta x\rfloor .
$$

The expansion of x is the infinite string $x_{1} x_{2} x_{3} \cdots$ where $x_{j}:=\left\lfloor\beta T^{j-1} x\right\rfloor$. For $\beta \in \mathbb{N}$, we recover the standard expansions in base β, and the β-expansion of $x \in[0,1)$ is eventually periodic (i.e., there exist p, n such that $x_{k+p}=x_{k}$ for all $k \geq n$) if and only if $x \in \mathbb{Q}$. This result was generalized to all Pisot bases by Schmidt Sch80, who proved that for a Pisot number β the expansion of $x \in[0,1)$ is eventually periodic if and only if $x \in \mathbb{Q}(\beta)$. Moreover, he showed that when $\beta^{2}=a \beta+1$, then each $x \in[0,1) \cap \mathbb{Q}$ has a purely periodic β-expansion.

Akiyama Aki98 showed that if β is a Pisot unit satisfying a certain finiteness property then there exists $c>0$ such that all $x \in \mathbb{Q} \cap[0, c)$ have a purely periodic expansion. If β is not a unit, then a rational number $p / q \in[0,1)$ can have a purely periodic expansion only if q is coprime to the norm $N(\beta)$. Many Pisot non-units have the property that there exists $c>0$ such that all rational numbers $p / q \in[0, c)$ with q coprime to $N(\beta)$ have a purely periodic expansion. This leads to the following definition:

Definition 1.1. Let β be a Pisot number, and let $N(\beta)$ denote the norm of β. We define $\gamma(\beta) \in[0,1]$ as the maximal c such that all $p / q \in \mathbb{Q} \cap[0, c)$ with $\operatorname{gcd}(q, N(\beta))=1$ have a purely periodic β-expansion. In other words,

$$
\gamma(\beta):=\inf \{p / q \in \mathbb{Q} \cap[0,1): \operatorname{gcd}(q, N(\beta))=1
$$

the β-expansion of p / q is not purely periodic $\} \cup\{1\}$.

[^0]The question is how to determine the value of $\gamma(\beta)$. Moreover, knowing when $\gamma(\beta)=0$ or 1 is of interest. Values of $\gamma(\beta)$ for whole classes of numbers as well as for particular numbers have been given Aki98, $\mathrm{AB}^{+} 08, \mathrm{AS05}$, MS14, Sch80. Periodic greedy expansions in negative quadratic unit bases were studied in MP13.

It is easy to observe that the expansion of x is purely periodic if and only if x is a periodic point of T, i.e., there exists $p \geq 1$ such that $T^{p} x=x$. The natural extension $(\mathcal{X}, \mathcal{T})$ of the dynamical system $([0,1), T)$ (with respect to its unique absolutely continuous invariant measure) can be defined in an algebraic way ($\$ 2.3$). Several authors contributed to proving the following result: A point $x \in[0,1)$ has a purely periodic β-expansion if and only if $x \in \mathbb{Q}(\beta)$ and its diagonal embedding lies in the natural extension domain \mathcal{X}. The quadratic unit case was solved by Hama and Imahashi [H197, and the confluent unit case by Ito and Sano [IS01, IS02. Then Ito and Rao IR05] resolved the unit case completely using an algebraic argument. For non-unit bases β, one has to consider finite (p-adic) places of the field $\mathbb{Q}(\beta)$. This allowed Berthé and Siegel BS 07 to extend the result to all (non-unit) Pisot numbers.

The first values of $\gamma(\beta)$ for two particular quadratic non-units were provided by Akiyama et al. $\mathrm{AB}^{+} 08$]. Recently, Minervino and the second author MS14 described the boundary of \mathcal{X} for quadratic non-unit Pisot bases. This allowed them to find the value of $\gamma(\beta)$ for an infinite class of quadratic numbers. Namely, let β be the positive root of $\beta^{2}=a \beta+b$ for $a \geq b \geq 1$ two coprime integers; then

$$
\gamma(\beta)= \begin{cases}1-\frac{(b-1) b \beta}{\beta^{2}-b^{2}} & \text { if } a>b(b-1) \\ 0 & \text { otherwise }\end{cases}
$$

(note that this value is 1 if and only if $b=1$).
The purpose of this article is to generalize this result to all quadratic Pisot numbers β with $N(\beta)<0$. (Note that if $N(\beta)>0$, then β has a positive Galois conjugate $\beta^{\prime}>0$ and $\gamma(\beta)=0$ by Aki98, Proposition 5].) To this end, we define β-adic expansions (not to be confused with the Rényi β-expansions) similarly to p-adic expansions with $p \in \mathbb{Z}$ (see also 82.4).

Definition 1.2. Let β be an algebraic integer. The β-adic expansion of $x \in \mathbb{Z}[\beta]$ is the unique infinite word $\boldsymbol{h}(x):=u_{0} u_{1} u_{2} \cdots$ such that $u_{n} \in$ $\{0,1, \ldots,|N(\beta)|-1\}$ and

$$
x-\sum_{i=0}^{n-1} u_{i} \beta^{i} \in \beta^{n} \mathbb{Z}[\beta] \quad \text { for all } n \in \mathbb{N} .
$$

For β an algebraic unit, all numbers have β-adic expansion 0^{ω} and the following results just state that $\gamma(\beta)=1$, which we already know from [Sch80].

Theorem 1. Let β be a quadratic Pisot number satisfying $\beta^{2}=a \beta+b$ with $a \geq b \geq 1$. Then

$$
\gamma(\beta)= \begin{cases}0 & \text { if } \sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right)>\beta \\ \beta-a & \text { or } \inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right)<-1, \\ & \text { if } \sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right) \in(2 \beta-a-1, \beta] \\ 1+\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) & \text { and } \inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \geq \beta-a-1, \\ \text { otherwise, },\end{cases}
$$

where $P_{u_{0} u_{1} u_{2} \ldots}(X):=\sum_{n \geq 0} u_{n} X^{n}$.
In many cases, we obtain the following direct formula (which we conjecture to be true for all $a \geq b \geq 1$):

Theorem 2. Let β be a quadratic Pisot number satisfying $\beta^{2}=a \beta+b$ for $a \geq b \geq 2$. Suppose either $a>\frac{1+\sqrt{5}}{2} b$, or $a=b$, or $\operatorname{gcd}(a, b)=1$. Then

$$
\begin{equation*}
\gamma(\beta)=\max \left\{0,1+\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right)\right\} . \tag{1.1}
\end{equation*}
$$

The infimum in (1.1) can be computed easily with the help of Proposition 3.2 below. For $a / b \in \mathbb{Z}$, Proposition 4.1 provides an even faster algorithm, and we are able to give a necessary and sufficient condition for $\gamma(\beta)=1$:

Theorem 3. Let β be a quadratic Pisot number satisfying $\beta^{2}=a \beta+b$ with $a \geq b \geq 1$ and such that b divides a.
(i) $\gamma(\beta)=1$ if and only if $a \geq b^{2}$ or $(a, b) \in\{(24,6),(30,6)\}$.
(ii) If $a=b \geq 3$ then $\gamma(\beta)=0$.

This paper is organized as follows: In the next section, notions involving words, representation spaces and β-tiles are recalled, and properties of β-adic expansions are studied. Section 3 connects tiles arising from the β-transformation and the value $\gamma(\beta)$ in order to prove Theorem 1. The proof of Theorem 2 is completed in Section 4 , together with that of Theorem 3. Comments on the general case are in Section 5, along with a list of related open questions.

2. Preliminaries

2.1. Words over a finite alphabet. We consider both finite and infinite words over a finite alphabet \mathcal{A}. The set of finite words over \mathcal{A} is denoted \mathcal{A}^{*}. The set of all (right) infinite words over \mathcal{A} is denoted \mathcal{A}^{ω}, and it is equipped with the Cantor topology. An infinite word is (eventually) periodic if it is of the form $v u^{\omega}:=v u u u \cdots$; a finite word v is the pre-period and a non-empty finite word u is the period; if the pre-period is empty, we speak about a purely periodic word. A prefix of a (finite or infinite) word w is any
finite word v such that w can be written as $w=v u$ for some word u. We denote by $\boldsymbol{u} \llbracket n \rrbracket$ the prefix of length n of an infinite word \boldsymbol{u}.

To a finite word $w=w_{0} w_{1} \cdots w_{k-1}$ we assign the polynomial

$$
P_{w}(X):=\sum_{i=0}^{k-1} w_{i} X^{i}
$$

Similarly, $P_{\boldsymbol{u}}(X):=\sum_{i \geq 0} u_{i} X^{i}$ is a power series for an infinite word $\boldsymbol{u}=$ $u_{0} u_{1} u_{2} \cdots$.
2.2. Representation spaces. The following notation will be used: For $a, b \in \mathbb{Z}$, we write $a \perp b$ if a and b are coprime. Moreover, for $b \geq 2$ we set $\mathbb{Z}_{b}:=\{p / q: p, q \in \mathbb{Z}, q \perp b\}$.

We adopt the notation of MS14, but we restrict ourselves to β being a quadratic Pisot number. Let $K=\mathbb{Q}(\beta)$. Since β is quadratic, there are exactly two infinite places of K; they are given by the two Galois isomorphisms of $\mathbb{Q}(\beta)$: the identity and $x \mapsto x^{\prime}$ that maps β to its Galois conjugate. Both these places have \mathbb{R} as their completion.

If β is not a unit, then we have to consider finite places of K as well. We define K_{f} to be the direct product ring $\prod_{\mathfrak{p} \mid(\beta)} K_{\mathfrak{p}}$, where \mathfrak{p} runs through all prime ideals of $\mathbb{Q}(\beta)$ that divide the principal ideal (β) and $K_{\mathfrak{p}}$ is the associate completion of \mathbb{K}; for a precise definition, we refer to [MS14, §2.2]. The direct products $\mathbb{K}:=K \times K^{\prime} \times K_{\mathrm{f}}$ and $\mathbb{K}^{\prime}:=K^{\prime} \times K_{\mathrm{f}}$ are called representation spaces. We consider the diagonal embeddings

$$
\delta: \mathbb{Q}(\beta) \rightarrow \mathbb{K}, x \mapsto\left(x, x^{\prime}, x_{\mathrm{f}}\right), \quad \text { and } \quad \delta^{\prime}: \mathbb{Q}(\beta) \rightarrow \mathbb{K}^{\prime}, x \mapsto\left(x^{\prime}, x_{\mathrm{f}}\right)
$$

where x_{f} is the vector of embeddings of x into the spaces $K_{\mathfrak{p}}$. We set

$$
S_{\mathrm{f}}:=\overline{\left\{x_{\mathrm{f}}: x \in S\right\}} \quad \text { for any } S \subseteq K
$$

In particular, we consider $\mathbb{Z}[\beta]_{\mathrm{f}}$, which is a compact subset of K_{f}. Since multiplication by β_{f} is a contraction on K_{f}, we find that $\beta_{\mathrm{f}}^{n} \mathbb{Z}[\beta]_{\mathrm{f}} \rightarrow\left\{0_{\mathrm{f}}\right\}$ as $n \rightarrow \infty$.

If β is a unit, we write $K_{\mathrm{f}}=\mathbb{Z}[\beta]_{\mathrm{f}}=\left\{0_{\mathrm{f}}\right\}$ for consistency, and we have $x_{\mathrm{f}}=0_{\mathrm{f}}$ for all $x \in K$.
2.3. Beta-tiles. For $x \in[0,1)$, we define the (reflected and translated) β-tile of x as the Hausdorff limit

$$
\mathcal{Q}(x):=\lim _{k \rightarrow \infty} \delta^{\prime}\left(x-\beta^{k} T^{-k}(x)\right) \subseteq \mathbb{K}^{\prime}
$$

Note that the standard definition of a β-tile for $x \in \mathbb{Z}\left[\beta^{-1}\right] \cap[0,1)$ is $\mathcal{R}(x):=$ $\delta^{\prime}(x)-\mathcal{Q}(x)$ (see e.g. MS14]). For a quadratic Pisot number β satisfying $\beta^{2}=a \beta+b$ with $a \geq b \geq 1$, we have $\mathcal{Q}(x)=\mathcal{Q}(0)$ for $x<\beta-a$ and
$\mathcal{Q}(x)=\mathcal{Q}(\beta-a)$ otherwise. The dynamical system $([0,1), T) \operatorname{admits}(\mathcal{X}, \mathcal{T})$ as its natural extension, where

$$
\mathcal{X}:=([0, \beta-a) \times \mathcal{Q}(0)) \cup([\beta-a, 1) \times \mathcal{Q}(\beta-a)) \subset \mathbb{K}
$$

is a union of two suspensions of β-tiles and $\mathcal{T}(x, y):=\delta(\beta)(x, y)-\delta(\lfloor\beta x\rfloor)$. The natural extension domain is often required to be a closed set, but here it is more convenient to work with the one above, since the following result holds:

Proposition 2.1 ([HI97, IR05, BS07]). For a Pisot number β, a number x has a purely periodic β-expansion if and only if $x \in \mathbb{Q}(\beta)$ and $\delta(x) \in \mathcal{X}$.
2.4. Beta-adic expansions. In Definition $1.2, \beta$-adic expansions are defined on $\mathbb{Z}[\beta]$. By Lemma 2.3 below, we extend this definition to the closure $\mathbb{Z}[\beta]_{\mathrm{f}}$ similarly to the p-adic case. To this end, let

$$
D: \mathbb{Z}[\beta]_{\mathrm{f}} \rightarrow \mathbb{Z}[\beta]_{\mathrm{f}}, \quad x \mapsto \beta_{\mathrm{f}}^{-1}\left(x-d(x)_{\mathrm{f}}\right)
$$

where $d(x)$ is the unique digit $d \in \mathcal{A}:=\{0,1, \ldots,|N(\beta)|-1\}$ such that $\beta_{\mathrm{f}}^{-1}\left(x-d_{\mathrm{f}}\right)$ is in $\mathbb{Z}[\beta]_{\mathrm{f}}$. Such a d exists because $\mathbb{Z}[\beta]=\mathcal{A}+\beta \mathbb{Z}[\beta]$. It is unique because $(c+\beta \mathbb{Z}[\beta])_{\mathrm{f}} \cap(d+\beta \mathbb{Z}[\beta])_{\mathrm{f}} \neq \emptyset$ implies $\left(\beta^{-1}(c-d)\right)_{\mathrm{f}} \in \mathbb{Z}[\beta]_{\mathrm{f}}$, and thus $c \equiv d(\bmod N(\beta))$ by the following lemma:

Lemma 2.2 ([MS14, Lemma 5.2 and (5.1)]). For each $x \in \mathbb{Z}\left[\beta^{-1}\right] \backslash \mathbb{Z}[\beta]$ we have $x_{\mathrm{f}} \notin \mathbb{Z}[\beta]_{\mathrm{f}}$. There exists $k \in \mathbb{N}$ such that $\mathbb{Z}\left[\beta^{-1}\right] \cap \beta^{k} \mathcal{O} \subseteq \mathbb{Z}[\beta]$, where \mathcal{O} is the ring of integers in $\mathbb{Q}(\beta)$.

LEMmA 2.3. The β-adic expansion map $\boldsymbol{h}_{\mathrm{f}}: \mathbb{Z}[\beta]_{\mathrm{f}} \rightarrow \mathcal{A}^{\omega}$ defined by

$$
\boldsymbol{h}_{\mathrm{f}}(z):=u_{0} u_{1} u_{2} \cdots, \quad \text { where } \quad u_{i}:=d\left(D^{i}(z)\right)
$$

is a homeomorphism. It satisfies $\boldsymbol{h}_{\mathrm{f}}\left(x_{\mathrm{f}}\right)=\boldsymbol{h}(x)$ for all $x \in \mathbb{Z}[\beta]$.
Proof. If β is a unit, both sets are singletons, hence $\boldsymbol{h}_{\mathrm{f}}$ is certainly a homeomorphism.

In the general case, the map $\boldsymbol{h}_{\mathrm{f}}$ is surjective because $\boldsymbol{h}_{\mathrm{f}}\left(P_{\boldsymbol{u}}\left(\beta_{\mathrm{f}}\right)\right)=\boldsymbol{u}$ for all $\boldsymbol{u} \in \mathcal{A}^{\omega}$. It is injective because $\boldsymbol{h}_{\mathrm{f}}(z)=\boldsymbol{u}=u_{0} u_{1} u_{2} \cdots$ implies that $z \in \sum_{i=0}^{n-1} u_{i} \beta_{\mathrm{f}}^{i}+\beta_{\mathrm{f}}^{n} \mathbb{Z}[\beta]_{\mathrm{f}}$ for all n, thus $z=P_{\boldsymbol{u}}\left(\beta_{\mathrm{f}}\right)$.

Since \mathcal{O}_{f} is open and $\mathbb{Z}\left[\beta^{-1}\right]_{\mathrm{f}}=K_{\mathrm{f}}$, we know from Lemma 2.2 that $\mathbb{Z}[\beta]_{\mathrm{f}}=\bigcup_{x \in \mathbb{Z}[\beta]} x_{\mathrm{f}}+\beta_{\mathrm{f}}^{k} \mathcal{O}_{\mathrm{f}}$ for some $k \in \mathbb{N}$, and therefore it is an open set as well. Then the preimage $\boldsymbol{h}_{\mathrm{f}}^{-1}\left(v \mathcal{A}^{\omega}\right)=P_{v}\left(\beta_{\mathrm{f}}\right)+\beta_{\mathrm{f}}^{n} \mathbb{Z}[\beta]_{\mathrm{f}}$ is open for any $v \in \mathcal{A}^{*}$. As the cylinders $\left\{v \mathcal{A}^{\omega}: v \in \mathcal{A}^{*}\right\}$ form a base of the topology of \mathcal{A}^{ω}, the $\operatorname{map} \boldsymbol{h}_{\mathrm{f}}$ is continuous.

Its inverse $\boldsymbol{h}_{\mathrm{f}}^{-1}$ is continuous because $\beta_{\mathrm{f}}^{n} \mathbb{Z}[\beta]_{\mathrm{f}} \rightarrow\left\{0_{\mathrm{f}}\right\}$ as $n \rightarrow \infty$.
For $x \in \mathbb{Z}[\beta]$, the equality $\boldsymbol{h}_{\mathrm{f}}\left(x_{\mathrm{f}}\right)=\boldsymbol{h}(x)$ follows from the fact that $\beta^{-1}\left(x-d\left(x_{\mathrm{f}}\right)\right) \in \mathbb{Z}[\beta]$.

Note that we can also identify the set $\mathbb{Z}[\beta]_{\mathrm{f}}$ with the inverse limit space $\lim _{\leftrightarrows} \mathbb{Z}[\beta] / \beta^{n} \mathbb{Z}[\beta]$. Indeed, the map

$$
\kappa: u_{0} u_{1} u_{2} \cdots \mapsto\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right), \quad \text { where } \quad \xi_{n}=\sum_{i=0}^{n-1} u_{i} \beta^{i}
$$

is an isomorphism $\mathcal{A}^{\omega} \rightarrow \underset{\longleftarrow}{\lim } \mathbb{Z}[\beta] / \beta^{n} \mathbb{Z}[\beta]$, and the following diagram commutes:

3. Beta-tiles and the value $\gamma(\beta)$. The goal of this section is to prove Theorems 1 and 2 , using the connection between β-tiles and the value of $\gamma(\beta)$. First we prove the following lemma about the closures of \mathbb{Z} and \mathbb{Z}_{b} in K_{f} :

Lemma 3.1. We have $(\mathbb{Z})_{\mathrm{f}}=\left(\mathbb{Z}_{b}\right)_{\mathrm{f}}=\left(\mathbb{Z}_{b} \cap[c, d]\right)_{\mathrm{f}}$ for all $c<d$.
Proof. We have $\left(\mathbb{Z}_{b}\right)_{\mathrm{f}}=\left(\mathbb{Z}_{b} \cap[c, d]\right)_{\mathrm{f}}$ by $\mathrm{AB}^{+} 08$, Lemma 4.7]. Clearly $\mathbb{Z} \subseteq \mathbb{Z}_{b}$, whence $(\mathbb{Z})_{\mathrm{f}} \subseteq\left(\mathbb{Z}_{b}\right)_{\mathrm{f}}$. We will prove that $\left(\mathbb{Z}_{b}\right)_{\mathrm{f}} \subseteq(\mathbb{Z})_{\mathrm{f}}$, that is, every $x / q \in \mathbb{Z}_{b}$ for $x, q \in \mathbb{Z}$ and $q \perp b$ can be approximated by integers. For each $n \in \mathbb{N}$, there exists $q_{n} \in \mathbb{Z}$ such that $q_{n} q \equiv 1\left(\bmod b^{n}\right)$. Then $\frac{x}{q}-q_{n} x=\left(1-q_{n} q\right) \frac{x}{q} \in \frac{1}{q} b^{n} \mathbb{Z} \subseteq \frac{1}{q} \beta^{n} \mathbb{Z}[\beta]$, therefore $\left(q_{n} x\right)_{\mathrm{f}} \rightarrow(x / q)_{\mathrm{f}}$.

Proof of Theorem 1. By Definition 1.1. Proposition 2.1 and as $\delta(1) \notin \mathcal{X}$, we have

$$
\gamma(\beta)=\inf \left\{x \in \mathbb{Z}_{b}: x \geq 0, \delta(x) \notin \mathcal{X}\right\}
$$

For $x \in \mathbb{Q} \cap[0, \beta-a)$, the condition $\delta(x) \in \mathcal{X}$ is equivalent to $\delta^{\prime}(x) \in \mathcal{Q}(0)$; for $x \in \mathbb{Q} \cap[\beta-a, 1)$, it is equivalent to $\delta^{\prime}(x) \in \mathcal{Q}(\beta-a)$.

We recall the results of [MS14, §9.3], where the shape of the tiles is described. The intersection of $\mathcal{Q}(x)$ with a line $K^{\prime} \times\{z\}$ is a line segment for any $z \in \mathbb{Z}[\beta]_{\mathrm{f}}$ and it is empty for all $z \in K_{\mathrm{f}} \backslash \mathbb{Z}[\beta]_{\mathrm{f}}$ (see Figure 1). Let $\partial^{-} \mathcal{Q}(x)$ denote the set of the segments' left end-points, and similarly $\partial^{+} \mathcal{Q}(x)$ is the set of the right end-points. For $x \in\{0, \beta-a\}$, set

$$
l_{x}:=\sup \pi^{\prime}\left(\delta^{-} \mathcal{Q}(x) \cap Y\right) \quad \text { and } \quad r_{x}:=\inf \pi^{\prime}\left(\delta^{+} \mathcal{Q}(x) \cap Y\right)
$$

where $Y:=K^{\prime} \times\left(\mathbb{Z}_{b}\right)_{\mathrm{f}}$ and π^{\prime} denotes the projection $\pi^{\prime}: K^{\prime} \times K_{\mathrm{f}} \rightarrow K^{\prime}$, $(y, z) \mapsto y$. Then all $p / q \in \mathbb{Z}_{b}$ in $\left[l_{0}, r_{0}\right] \cap[0, \beta-a)$ have a purely periodic expansion, and so do all $p / q \in \mathbb{Z}_{b}$ in $\left[l_{\beta-a}, r_{\beta-a}\right] \cap[\beta-a, 1)$. Outside these

Fig. 1. The tiles $\mathcal{Q}(0)$ and $\mathcal{Q}(\beta-a)$ for $\beta=1+\sqrt{3}$. The (horizontal) stripes illustrate the intersection of $Y=K^{\prime} \times(\mathbb{Z})_{\mathrm{f}}$ with the tiles.
two sets, those $p / q \in \mathbb{Z}_{b}$ that do not have a purely periodic expansion are dense, since the points $\delta^{\prime}(p / q)$ are dense in Y by Lemma 3.1. Therefore, $\gamma(\beta)$ depends on the relative position of the above intervals (see Figure 1) in the following way:

$$
\gamma(\beta)= \begin{cases}0 & \text { if } l_{0}>0 \text { or } r_{0}<0, \tag{3.1}\\ r_{0} & \text { if } l_{0} \leq 0 \text { and } r_{0} \in[0, \beta-a), \\ \beta-a & \text { if } l_{0} \leq 0, r_{0} \geq \beta-a \text { and } \beta-a \notin\left[l_{\beta-a}, r_{\beta-a}\right], \\ \min \left\{r_{\beta-a}, 1\right\} & \text { if } l_{0} \leq 0, r_{0} \geq \beta-a \text { and } \beta-a \in\left[l_{\beta-a}, r_{\beta-a}\right] .\end{cases}
$$

In the rest of the proof, we will show that

$$
\begin{align*}
& l_{0}=l_{\beta-a}-1=-\beta+\sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right), \tag{3.2}\\
& r_{0}=r_{\beta-a}=1+\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) . \tag{3.3}
\end{align*}
$$

As $\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \leq P_{\boldsymbol{h}(0)}\left(\beta^{\prime}\right)=0$, we see that (3.1) implies the statement of the theorem.

We use results of MS14, $\S \S 8.3,9.2$ and 9.3], namely equations (8.4) and (9.2) there, which read:

$$
z \in \mathcal{R}(x) \cap \mathcal{R}(y) \quad \text { if and only if } \quad z=\delta^{\prime}(x)+P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right),
$$

where $\boldsymbol{u}=u_{0} u_{1} u_{2} \cdots$ is an edge-labelling of a path in the boundary graph in Figure 2 that starts at the node $y-x$; and

$$
\partial \mathcal{R}(x)=(\mathcal{R}(x) \cap \mathcal{R}(x+\beta-\lfloor x+\beta\rfloor)) \cup(\mathcal{R}(x) \cap \mathcal{R}(x-\beta-\lfloor x-\beta\rfloor)),
$$

Fig. 2. Boundary graph for quadratic β-tiles MS14, Fig. 6]. Each arrow in the graph represents exactly b edges.
where the first part is the left boundary $\mathcal{R}^{-}(x)$ and the second part is the right boundary $\mathcal{R}^{+}(x)$. Therefore

$$
\begin{aligned}
& \partial^{-} \mathcal{R}(0)=\partial^{+} \mathcal{R}(\beta-a)=\mathcal{R}(0) \cap \mathcal{R}(\beta-a)=\left\{P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in(\mathcal{A B})^{\omega}\right\}, \\
& \partial^{+} \mathcal{R}(0)=\mathcal{R}(a+1-\beta) \cap \mathcal{R}(0)=\left\{\delta^{\prime}(a+1-\beta)+P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in(\mathcal{A B})^{\omega}\right\}, \\
& \partial^{-} \mathcal{R}(\beta-a)=\mathcal{R}(\beta-a) \cap \mathcal{R}(2 \beta-\lfloor 2 \beta\rfloor) \\
& =\left\{\delta^{\prime}(\beta-a)+P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in(\mathcal{A B})^{\omega}\right\},
\end{aligned}
$$

where $\mathcal{B}:=\{a-b+1, a-b+2, \ldots, a\}$. We have

$$
\begin{aligned}
\left\{P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in(\mathcal{A B})^{\omega}\right\} & =\left\{P_{((b-1) a)^{\omega}}\left(\delta^{\prime}(\beta)\right)-P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in \mathcal{A}^{\omega}\right\} \\
& =-\delta^{\prime}(1)-\left\{P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in \mathcal{A}^{\omega}\right\}
\end{aligned}
$$

since $\mathcal{A}=b-1-\mathcal{A}$ and $\mathcal{B}=a-\mathcal{A}$. Because $\mathcal{Q}(x)=\delta^{\prime}(x)-\mathcal{R}(x)$, we have $\partial^{ \pm} \mathcal{Q}(x)=\delta^{\prime}(x)-\partial^{\mp} \mathcal{R}(x)$. We obtain

$$
\begin{aligned}
\partial^{-} \mathcal{Q}(0) & =\delta^{\prime}(\beta-a)+\left\{P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in \mathcal{A}^{\omega}\right\} \\
\partial^{-} \mathcal{Q}(\beta-a) & =\delta^{\prime}(\beta-a+1)+\left\{P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in \mathcal{A}^{\omega}\right\} \\
\partial^{+} \mathcal{Q}(0)=\partial^{+} \mathcal{Q}(\beta-a) & =\delta^{\prime}(1)+\left\{P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right): \boldsymbol{u} \in \mathcal{A}^{\omega}\right\}
\end{aligned}
$$

We have

$$
\begin{aligned}
\delta^{\prime}(1)+P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right) \in Y & \Leftrightarrow 1_{\mathrm{f}}+P_{\boldsymbol{u}}\left(\beta_{\mathrm{f}}\right) \in \mathbb{Z}_{\mathrm{f}} \\
& \Leftrightarrow P_{\boldsymbol{u}}\left(\beta_{\mathrm{f}}\right) \in \mathbb{Z}_{\mathrm{f}} \Leftrightarrow \boldsymbol{u} \in \boldsymbol{h}_{\mathrm{f}}\left(\mathbb{Z}_{\mathrm{f}}\right),
\end{aligned}
$$

because $\boldsymbol{h}_{\mathrm{f}}\left(P_{\boldsymbol{u}}\left(\beta_{\mathrm{f}}\right)\right)=\boldsymbol{u}$ and $\boldsymbol{h}_{\mathrm{f}}$ is a homeomorphism by Lemma 2.3. Then, since the map $\mathbb{Z}_{\mathrm{f}} \rightarrow K^{\prime}, z \mapsto P_{\boldsymbol{h}_{\mathrm{f}}(z)}\left(\beta^{\prime}\right)$, is continuous, we get

$$
\inf \pi^{\prime}\left(\partial^{+} \mathcal{Q}(x) \cap Y\right)=1+\inf _{z \in \mathbb{Z}_{\mathrm{f}}} P_{\boldsymbol{h}_{\mathrm{f}}(z)}\left(\beta^{\prime}\right)=1+\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right)
$$

This proves (3.3). Similarly, $\delta^{\prime}(\beta-a)+P_{\boldsymbol{u}}\left(\delta^{\prime}(\beta)\right) \in Y$ if and only if $\boldsymbol{u} \in$ $\boldsymbol{h}_{\mathrm{f}}\left(\mathbb{Z}_{\mathrm{f}}-\beta_{\mathrm{f}}\right)$, therefore

$$
\sup \pi^{\prime}\left(\partial^{-} \mathcal{Q}(\beta-a) \cap Y\right)-1=\sup \pi^{\prime}\left(\partial^{-} \mathcal{Q}(0) \cap Y\right)=\beta^{\prime}-a+\sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right)
$$

Since $\beta^{\prime}-a=-\beta$, this shows (3.2).
Proof of Theorem 2. case $a>\frac{1+\sqrt{5}}{2} b$. Since $\beta^{\prime}<0$, we have

$$
\sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right) \leq \sup _{\boldsymbol{u} \in \mathcal{A}^{\omega}} P_{\boldsymbol{u}}\left(\beta^{\prime}\right)=P_{((b-1) 0)^{\omega}}\left(\beta^{\prime}\right)=\frac{b-1}{1-\left(\beta^{\prime}\right)^{2}}
$$

We will show that this quantity is $<2 \beta-a-1$. First, we derive, using $\left(\beta^{\prime}\right)^{2}=a \beta^{\prime}+b, \beta=a-\beta^{\prime}$ and $1-\left(\beta^{\prime}\right)^{2}>0$, that it is equivalent to

$$
\begin{equation*}
a+a b+\beta^{\prime}\left(a^{2}+a+2 b-2\right)>0 \tag{3.4}
\end{equation*}
$$

We know that $\beta<a+1$, therefore

$$
\beta=a+\frac{b}{\beta}>\frac{a(a+1)+b}{a+1} \quad \text { and } \quad \beta^{\prime}=-\frac{b}{\beta}>-\frac{(a+1) b}{a^{2}+a+b}
$$

Further, $a^{2}+a+2 b-2>0$, therefore we estimate

$$
a+a b+\beta^{\prime}\left(a^{2}+a+2 b-2\right)>\frac{a b^{2}\left(\left(\frac{a}{b}\right)^{2}-\frac{a}{b}-1\right)+b^{2}\left(\left(\frac{a}{b}\right)^{2}+2 \frac{a}{b}-2\right)+2 b}{a^{2}+a+b}
$$

When $a / b>(1+\sqrt{5}) / 2$, all three terms in the numerator are positive. Since the denominator is also positive, we get $\sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right)<2 \beta-a-1$. Theorem 1 then implies (1.1).

The proof of the case $a \perp b$ of Theorem 2 was given in [MS14, §9]. The case $a=b$ is handled in the next section on page 13 , because it falls under the case when b divides a.

The following proposition shows how to compute the infimum in Theorem 2 and thus the value of $\gamma(\beta)$ in a lot of (and possibly all) cases. Comments on the computation of $\gamma(\beta)$ by Theorem 1 are in Section 5 . We recall that $\boldsymbol{u} \llbracket n \rrbracket$ denotes the prefix of \boldsymbol{u} of length n.

Proposition 3.2. Let $\beta^{2}=a \beta+b$ with $a \geq b \geq 2$. Then for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \in \min _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j) \llbracket n \rrbracket}\left(\beta^{\prime}\right)+\left(\beta^{\prime}\right)^{n} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}}\left[\beta^{\prime}, 1\right] . \tag{3.5}
\end{equation*}
$$

Lemma 3.3. Let $x, y \in \mathbb{Z}[\beta]$ with $x-y \in b^{n} \mathbb{Z}[\beta]$. Then $\boldsymbol{h}(x) \llbracket n \rrbracket=$ $\boldsymbol{h}(y) \llbracket n \rrbracket$.

Proof. Since $b=\beta^{2}-a \beta \in \beta \mathbb{Z}[\beta]$, we have $x-y \in \beta^{n} \mathbb{Z}[\beta]$. Let $\boldsymbol{h}(x)=$ $u_{0} u_{1} \cdots$. Then $x-\sum_{j=0}^{n-1} u_{j} \beta^{j} \in \beta^{n} \mathbb{Z}[\beta]$ and so $y-\sum_{j=0}^{n-1} u_{j} \beta^{j} \in \beta^{n} \mathbb{Z}[\beta]$, which means that $u_{0} \cdots u_{n-1}$ is a prefix of $\boldsymbol{h}(y)$.

Proof of Proposition 3.2. Set $\mu_{n}:=\min _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j) \llbracket n \rrbracket}\left(\beta^{\prime}\right)$. The statement actually consists of two inequalities, which will be proved separately. Let $j \in \mathbb{Z}$. Since $\boldsymbol{h}(j) \llbracket n \rrbracket=\boldsymbol{h}\left(j \bmod b^{n}\right) \llbracket n \rrbracket$ by Lemma 3.3 and since $\beta^{\prime}<0$, we have

$$
\begin{aligned}
& P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \geq P_{\boldsymbol{h}(j) \llbracket n \rrbracket(0(b-1))^{\omega}}\left(\beta^{\prime}\right) \geq \mu_{n}+\left(\beta^{\prime}\right)^{n+1} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}} \quad \text { if } n \text { is even, } \\
& P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \geq P_{\boldsymbol{h}(j) \llbracket n \rrbracket((b-1) 0)^{\omega}}\left(\beta^{\prime}\right) \geq \mu_{n}+\left(\beta^{\prime}\right)^{n} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}} \quad \text { if } n \text { is odd. }
\end{aligned}
$$

To prove the other inequality, let $k \in\left\{0, \ldots, b^{n}-1\right\}$ be such that $\mu_{n}=$ $P_{\boldsymbol{h}(k) \llbracket n \rrbracket}\left(\beta^{\prime}\right)$. Then

$$
\begin{aligned}
& P_{\boldsymbol{h}(k)}\left(\beta^{\prime}\right) \leq P_{\boldsymbol{h}(k) \llbracket n \rrbracket((b-1) 0)^{\omega}}\left(\beta^{\prime}\right)=\mu_{n}+\left(\beta^{\prime}\right)^{n} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}} \quad \text { if } n \text { is even, } \\
& P_{\boldsymbol{h}(k)}\left(\beta^{\prime}\right) \leq P_{\boldsymbol{h}(k) \llbracket n \rrbracket(0(b-1))^{\omega}}\left(\beta^{\prime}\right)=\mu_{n}+\left(\beta^{\prime}\right)^{n+1} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}} \quad \text { if } n \text { is odd }
\end{aligned}
$$

this provides the upper bound on the infimum.
4. The case where b divides a. In this section, we aim to prove Theorem 3, which deals with the particular case when b divides a. Table 1 shows whether $\gamma(\beta)$ is 0,1 or strictly in between, for $b \leq 12$ and $a / b \leq 15$. The first non-trivial values are listed in Table 2. The algorithm for obtaining these values is deduced from Theorem 2 (which covers all the cases when $a / b \in \mathbb{Z}$ since then either $a=b$ or $a \geq 2 b>\frac{1+\sqrt{5}}{2} b$), and the following proposition, which improves the statement of Proposition 3.2.

Table 1. The values of $\gamma(\beta)$ for b dividing a. The star ' \star ' means that the value is strictly between 0 and 1 .

$a / b=1$1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 1															
$b=1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	*	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	*	1	1	1	1	1	1	1	1	1	1	1	1	1
4	0	*	*	1	1	1	1	1	1	1	1	1	1	1	1
5	0	*	*	*	1	1	1	1	1	1	1	1	1	1	1
6	0	*	*	1	1	1	1	1	1	1	1	1	1	1	1
7	0	*	*	*	*	*	1	1	1	1	1	1	1	1	1
8	0	*	*	*	*	*	*	1	1	1	1	1	1	1	1
9	0	*	*	*	*	*	*	*	1	1	1	1	1	1	1
10	0	*	*	*	*	*	*	*	*	1	1	1	1	1	1
11	0	0	*	*	*	*	*	*	*	*	1	1	1	1	1
12	0	0	*	*	*	*	*	*	*	*	*	1	1	1	1

Proposition 4.1. Let $\beta^{2}=a \beta+b$ with $a \geq b \geq 2$ and $a / b \in \mathbb{Z}$. Then for each $n \in \mathbb{N}$,

$$
\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \in \min _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)+\left(\beta^{\prime}\right)^{2 n} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}}\left[\beta^{\prime}, 0\right]
$$

LEMMA 4.2. Let $\beta^{2}=c b \beta+b$. Let $x, y \in \mathbb{Z}[\beta]$ with $x-y \in b^{n} \mathbb{Z}[\beta]$ for some $n \in \mathbb{N}$. Then $\boldsymbol{h}(x) \llbracket 2 n \rrbracket=\boldsymbol{h}(y) \llbracket 2 n \rrbracket$. Moreover, for all $x \in \mathbb{Z}[\beta]$ and $d \in \mathcal{A}$ there exists $y \in x+b^{n} \mathcal{A}$ such that $\boldsymbol{h}(y) \llbracket 2 n+1 \rrbracket=\boldsymbol{h}(x) \llbracket 2 n \rrbracket d$.

Table 2. Numerical values of $\gamma(\beta)$, where $\beta^{2}=a \beta+b$, that correspond to the first ' x ' in Table 1

a	b	$\gamma(\beta)$
2	2	$0.91480304419665 \cdots$
6	3	$0.99296356010177 \cdots$
8	4	$0.93354294467597 \cdots$
12	4	$0.99989778900097 \cdots$
10	5	$0.83415079417546 \cdots$
15	5	$0.99530672367191 \cdots$
20	5	$0.99999990711058 \cdots$

a	b	$\gamma(\beta)$
12	6	$0.73611417827238 \cdots$
18	6	$0.99389726639536 \cdots$
14	7	$0.58490653345818 \cdots$
21	7	$0.94452609461867 \cdots$
28	7	$0.99798478808267 \cdots$
35	7	$0.99998604176743 \cdots$
42	7	$0.99999999999971 \cdots$

Proof. We have $\beta^{2}=b(c \beta+1) \in b \mathbb{Z}[\beta]$ and $b=\beta^{2}-c\left(1+c^{2} b\right) \beta^{3}+c^{2} \beta^{4} \in$ $\beta^{2}+\beta^{3} \mathbb{Z}[\beta] \subseteq \beta^{2} \mathbb{Z}[\beta]$, whence $\beta^{2} \mathbb{Z}[\beta]=b \mathbb{Z}[\beta]$ and $\beta^{2 n} \mathbb{Z}[\beta]=b^{n} \mathbb{Z}[\beta]$ for all $n \in \mathbb{N}$. Following the lines of the proof of Lemma 3.3, we find that if $x-y \in b^{n} \mathbb{Z}[\beta]$ then $\boldsymbol{h}(x)$ and $\boldsymbol{h}(y)$ have a common prefix of length at least $2 n$.

To prove the second statement, write $u_{0} u_{1} \cdots:=\boldsymbol{h}(x)$. Since $b^{n} \in$ $\beta^{2 n}+\beta^{2 n+1} \mathbb{Z}[\beta]$, we conclude that $u_{0} u_{1} \cdots u_{2 n-1} d$ is a prefix of $\boldsymbol{h}\left(x+e b^{n}\right)$ for any $e \equiv d-u_{2 n}(\bmod b)$.

Proof of Proposition 4.1. We follow the lines of the proof of Proposition 3.2 for n even. The lower bound is the same in both statements, therefore we only need to prove that $\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \leq P_{\boldsymbol{h}(k) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)$, where $k:=\arg \min _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)$. For each $m \in \mathbb{N}$, there exists $k_{m} \in \mathbb{Z}$ such that $\boldsymbol{h}\left(k_{m}\right) \llbracket 2 n+2 m \rrbracket \in \boldsymbol{h}(k) \llbracket 2 n \rrbracket(0 \mathcal{A})^{m}$ by Lemma 4.2. Then

$$
\begin{aligned}
\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) & \leq \inf _{m \in \mathbb{N}} P_{\boldsymbol{h}\left(k_{m}\right)}\left(\beta^{\prime}\right) \leq \inf _{m \in \mathbb{N}} P_{\boldsymbol{h}(k) \llbracket n \rrbracket 0^{2 m}((b-1) 0)^{\omega}}\left(\beta^{\prime}\right) \\
& =P_{\boldsymbol{h}(k) \llbracket n \rrbracket}\left(\beta^{\prime}\right) .
\end{aligned}
$$

REmark 4.3. We have

$$
\begin{equation*}
\mu_{n}:=\min _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)=\min _{j \in J_{n-1}+b^{n-1} \mathcal{A}} P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{0}:=\{0\}, \\
& J_{n}:=\left\{j \in J_{n-1}+b^{n-1} \mathcal{A}: P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)<\mu_{n}+\left|\beta^{\prime}\right|^{2 n+1} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}}\right\} .
\end{aligned}
$$

To verify 4.1, we first show that the sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ is non-increasing. Let $j \in\left\{0,1, \ldots, b^{n}-1\right\}$ be such that $\mu_{n}=P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)$. Then by Lemma 4.2
there exists $d \in \mathcal{A}$ such that $\boldsymbol{h}\left(j+d b^{n}\right) \llbracket 2 n+1 \rrbracket=\boldsymbol{h}(j) \llbracket 2 n \rrbracket 0$, whence $\mu_{n+1} \leq$ $P_{\boldsymbol{h}\left(j+d b^{n}\right) \llbracket 2 n+2 \rrbracket}\left(\beta^{\prime}\right) \leq \mu_{n}$.

Suppose now that $j \in\left\{0,1, \ldots, b^{n}-1\right\} \backslash\left(J_{n-1}+b^{n-1} \mathcal{A}\right)$. Then there exists $m<n$ such that $P_{\boldsymbol{h}(j) \llbracket 2 m \rrbracket}\left(\beta^{\prime}\right) \geq \mu_{m}+\left|\beta^{\prime}\right|^{2 m+1} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}}$, therefore $P_{\boldsymbol{h}(j) \llbracket 2 n \rrbracket}\left(\beta^{\prime}\right)>\mu_{m} \geq \mu_{n}$.

Example 4.4. As an example, the computation of $\gamma(\beta)$ for $\beta=1+\sqrt{3}$, the Pisot root of $\beta^{2}=2 \beta+2$, is visualized in Figure 3. For each step of the algorithm, the value of $\gamma(\beta)$ lies in the leftmost interval. Already in the 5 th step we obtain $\gamma(\beta) \in[0.900834,0.970552]$, therefore it is strictly between 0 and 1 . Note that in the 9 th step we find that $\mu_{9}=P_{t^{(9)}}\left(\beta^{\prime}\right)$ with $t^{(9)}=001100010101010001$, and $\gamma(\beta) \in[0.910126652,0.915876683]$. In the 40th step, we deduce that

$$
t^{(40)}=001100(01)^{4} 000100(0001)^{4}(00)^{2}(01)^{5}(00)^{3}(01)^{6}(00)^{2} 01
$$

and $\gamma(\beta) \approx 0.914803044$.

Fig. 3. The computation of $\gamma(1+\sqrt{3})$. By a thick line with a bold label we denote the intervals that we 'keep' (these arise from numbers in J_{n}), by a thin line the ones that we 'forget'. The labels next to the intervals are the corresponding prefixes $\boldsymbol{h}(j) \llbracket 2 n \rrbracket$.

Proof of Theorem 2, case $a=b$. Take $a=b \geq 4$. Then $b=\beta^{2}+(b-1) \beta^{3}$ $+(2 b+1) \beta^{4}$, therefore $\boldsymbol{h}(b) \llbracket 4 \rrbracket=001(b-1)$. According to Proposition 4.1, we have

$$
A:=\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \leq P_{001(b-1)}\left(\beta^{\prime}\right)=\left(\beta^{\prime}\right)^{2}+(b-1)\left(\beta^{\prime}\right)^{3}
$$

For $a=b \geq 5$, we use the estimate $-\beta^{\prime} \in\left(\frac{b}{b+1}, 1\right)$ to deduce that $A<$ $1-\frac{b^{3}(b-1)}{(b+1)^{3}}<-1$, therefore $\gamma(\beta)=0$. For $a=b=4$, we have $P_{001(b-1)}\left(\beta^{\prime}\right) \approx$ -1.0193 , thus $A<-1$.

When $a=b=3$, we verify that $\boldsymbol{h}(21) \llbracket 12 \rrbracket=001200020201$, and Proposition 4.1 yields $A \leq P_{001200020201}\left(\beta^{\prime}\right) \approx-1.0726<-1$, therefore $\gamma(\beta)=0$.

When $a=b=2$, we can follow the lines of the proof of the case $a>$ $(1+\sqrt{5}) b / 2$, because we observe that (3.4) is satisfied: $6+8 \beta^{\prime} \approx 0.1436>0$.

The proof of Theorem 3 is divided into several cases.
Proof of Theorem 3, case $a \geq b^{2}$. Any $j \in \mathbb{Z} \backslash\{0\}$ can be written as $j=b^{n}\left(j_{0}+j_{1} b\right)$, where $n \in \mathbb{N}, j_{0} \in \mathcal{A} \backslash\{0\}$ and $j_{1} \in \mathbb{Z}$. Then $\boldsymbol{h}(j) \llbracket 2 n+1 \rrbracket=$ $0^{2 n} j_{0}$ becase $b^{n} \in \beta^{2 n}+\beta^{2 n+1} \mathbb{Z}[\beta]$, whence

$$
\begin{aligned}
P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) & \geq P_{\boldsymbol{h}(j) \llbracket 2 n+1 \rrbracket((b-1) 0)^{\omega}\left(\beta^{\prime}\right)} \geq P_{0^{2 n} 1((b-1) 0)^{\omega}\left(\beta^{\prime}\right)} \\
& =\left(\beta^{\prime}\right)^{2 n}\left(1+\frac{(b-1) \beta^{\prime}}{1-\left(\beta^{\prime}\right)^{2}}\right)=\left(\beta^{\prime}\right)^{2 n}\left(1-\frac{(b-1) b \beta}{\beta^{2}-b^{2}}\right)>0
\end{aligned}
$$

where the last inequality was already proved in [MS14, Theorem 6]. As $\boldsymbol{h}(0)=0^{\omega}$, we have $P_{\boldsymbol{h}(0)}\left(\beta^{\prime}\right)=0$. From Theorem 2 we conclude that $\gamma(\beta)=1+\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right)=1$.

The remaining cases of the proof of Theorem 3 make use of the following relations. Let $c:=a / b \in \mathbb{Z}$. Then $\frac{b}{\beta^{2}}=\frac{1}{1+c \beta} \in 1-c \beta+c^{2} \beta^{2}-c^{3} \beta^{3}+\beta^{4} \mathbb{Z}[\beta]$, and more generally,
(4.2) $\quad \frac{b^{n}}{\beta^{2 n}} \in 1-n c \beta+\binom{n+1}{2} c^{2} \beta^{2}-\binom{n+2}{3} c^{3} \beta^{3}+\beta^{4} \mathbb{Z}[\beta] \quad$ for any $n \in \mathbb{N}$.

For $j=\left(j_{0}+j_{1} b\right) b^{n}$ with $n \in \mathbb{N}$ and $j_{0}, j_{1} \in \mathbb{Z}$ we have $\frac{j}{\beta^{2 n}}=j_{0} \frac{b^{n}}{\beta^{2 n}}+$ $j_{1} \beta^{2} \frac{b^{n+1}}{\beta^{2 n+2}}$, therefore

$$
\begin{align*}
\frac{j}{\beta^{2 n}} \in & j_{0}-j_{0} n c \beta+\left(j_{0}\binom{n+1}{2} c^{2}+j_{1}\right) \beta^{2} \tag{4.3}\\
& -\left(j_{0}\binom{n+2}{3} c^{3}+j_{1}(n+1) c\right) \beta^{3}+\beta^{4} \mathbb{Z}[\beta]
\end{align*}
$$

Proof of Theorem 3, case $\beta^{2}=30 \beta+6$. We have $b=6$ and $c=5$. As in the previous case, we will show that $P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \geq 0$ for all $j \in \mathbb{Z}$. Write $j \neq 0$
as $j=b^{n}\left(j_{0}+j_{1} b\right)$ with $j_{0} \in \mathcal{A} \backslash\{0\}$ and $j_{1} \in \mathbb{Z}$. Then $\boldsymbol{h}(j)=0^{2 n} u_{0} u_{1} u_{2} \cdots$ for some $u_{0} u_{1} \cdots \in \mathcal{A}^{\omega}$ with $u_{0}=j_{0}$, and $P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right)=\left(\beta^{\prime}\right)^{2 n} P_{u_{0} u_{1} \ldots}\left(\beta^{\prime}\right)$. We consider the following cases:

- If $u_{0} \geq 2$, then $P_{u_{0} u_{1} \ldots}\left(\beta^{\prime}\right) \geq P_{2(50)^{\omega}}\left(\beta^{\prime}\right)>0$.
- If $u_{0}=1$ and $u_{1} \leq 4$, then $P_{u_{0} u_{1} \ldots}\left(\beta^{\prime}\right) \geq P_{14(05)^{\omega}}\left(\beta^{\prime}\right)>0$.
- If $u_{0} u_{1}=15$, then (4.3) implies that $j_{0}=1$ and $-j_{0} n c \equiv 5(\bmod 6)$, therefore $n \equiv-1(\bmod 6)$ and $n=6 n_{1}-1$, i.e., $-j_{0} n c \beta=5 \beta-30 n_{1} \beta \in$ $5 \beta-5 n_{1} \beta^{3}+\beta^{4} \mathbb{Z}[\beta]$. Therefore

$$
\begin{aligned}
\frac{j}{\beta^{2 n}} \in & 1+5 \beta+\left(\binom{6 n_{1}}{2} 5^{2}+j_{1}\right) \beta^{2} \\
& -\left(\frac{\left(6 n_{1}+1\right) 6 n_{1}\left(6 n_{1}-1\right)}{6} 5^{3}+30 n_{1} j_{1}+5 n_{1}\right) \beta^{3}+\beta^{4} \mathbb{Z}[\beta] .
\end{aligned}
$$

The coefficient of β^{3} is congruent to 0 modulo 6 regardless of the values of n_{1} and j_{1}. This means that $u_{3}=0$. Thus $P_{15 u_{2} 0(05)^{\omega}}\left(\beta^{\prime}\right) \geq P_{1500(05)^{\omega}}\left(\beta^{\prime}\right)$ >0.

Therefore $P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right) \geq 0$ for all $j \in \mathbb{Z}$.
Proof of Theorem 3, case $\beta^{2}=24 \beta+6$. We have $b=6$ and $c=4$. We use the same technique as in the case $\beta^{2}=30 \beta+6$.

- If $u_{0} \geq 2$, then $P_{u_{0} u_{1} \ldots}\left(\beta^{\prime}\right) \geq P_{2(50)^{\omega}}\left(\beta^{\prime}\right)>0$.
- If $u_{0}=1$ and $u_{1} \leq 3$, then $P_{u_{0} u_{1} \ldots} \ldots\left(\beta^{\prime}\right) \geq P_{13(05) \omega}\left(\beta^{\prime}\right)>0$.
- Since c is even, so is $u_{1} \equiv-j_{0} n c(\bmod 6)$, therefore $u_{0} u_{1} \neq 15$.
- If $u_{0} u_{1}=14$, then 4.3$)$ gives $j_{0}=1$ and $-j_{0} n c \equiv 4(\bmod 6)$, i.e., $n \equiv-1(\bmod 3)$ and $n=3 n_{1}-1$, whence $-j_{0} n c \beta=4 \beta-12 n_{1} \beta \in$ $4 \beta-2 n_{1} \beta^{3}+\beta^{4} \mathbb{Z}[\beta]$. We derive that

$$
\frac{j}{\beta^{2 n}} \in 1+4 \beta+(\text { some integer }) \beta^{2}-\left(144 n_{1}^{3}-30 n_{1}+12 n_{1} j_{1}\right) \beta^{3}+\beta^{4} \mathbb{Z}[\beta] .
$$

As above, we get $u_{3}=0$ regardless of the values of n_{1} and j_{1}, thus $P_{u_{0} u_{1} \ldots}\left(\beta^{\prime}\right) \geq P_{1400(05)^{\omega}}\left(\beta^{\prime}\right)>0$.
Proof of Theorem 3, case $c:=a / b<b$ and $c \notin\{4,5\}$ when $b=6$. Let $n:=\left\lceil\frac{c}{b-c}\right\rceil$. From (4.2), the β-adic expansion $\boldsymbol{h}\left(b^{n}\right)$ starts with $0^{2 n} 1(n b-n c)$. If $\frac{c}{b-c} \notin \mathbb{Z}$, then $n b-n c>c$ and thus $P_{1(n b-n c)}\left(\beta^{\prime}\right) \leq 1+(c+1) \beta^{\prime}<0$, by using $\beta^{\prime}=-\frac{b}{\beta}<-\frac{b}{c b+1} \leq-\frac{1}{c+1}$. By Proposition 4.1. this proves that $\gamma(\beta)<1$ if c is not a multiple of $b-c$.

Assume now that $\frac{c}{b-c} \in \mathbb{Z}$, i.e., $n=\frac{c}{b-c}$. For $j:=b^{n}-\binom{n+1}{2} c^{2} b^{n+1}$, we see by (4.3) that

$$
\frac{j}{\beta^{2 n}} \in 1-n c \beta-\left(\binom{n+2}{3} c^{3}-\binom{n+1}{2} c^{3}(n+1)\right) \beta^{3}+\beta^{4} \mathbb{Z}[\beta] .
$$

Since $-n c=c-n b \in c-n \beta^{2}+\beta^{3} \mathbb{Z}[\beta]$ and $(n+1) c=n b \in \beta \mathbb{Z}[\beta]$, we obtain

$$
\frac{j}{\beta^{2 n}} \in 1+c \beta-\left(\binom{n+2}{3} c^{3}+n\right) \beta^{3}+\beta^{4} \mathbb{Z}[\beta] .
$$

If $\binom{n+2}{3} c^{3}+n \not \equiv 0(\bmod b)$, then
$P_{\boldsymbol{h}(j) \llbracket 2 n+4 \rrbracket}\left(\beta^{\prime}\right) \leq P_{0^{2 n} 1 c 01}\left(\beta^{\prime}\right)=\frac{\left(\beta^{\prime}\right)^{2 n+2}}{b}+\left(\beta^{\prime}\right)^{2 n+3}=\left(\beta^{\prime}\right)^{2 n+2} \frac{\beta-b^{2}}{b \beta}<0$,
since $1+c \beta^{\prime}=\left(\beta^{\prime}\right)^{2} / b$ and $\beta<a+1 \leq b^{2}$, therefore $\gamma(\beta)<1$ by Proposition 4.1 .

It remains to consider the case $\binom{n+2}{3} c^{3}+n \equiv 0(\bmod b)$, i.e.,

$$
n \equiv-\frac{b n(n+2)}{6} c^{2} n(\bmod b)
$$

because $(n+1) c=n b$. Multiplying by $b-c$ gives

$$
c \equiv-\frac{b n(n+2)}{6} c^{3}(\bmod b)
$$

Note that $\frac{b n(n+2)}{6}=(b-c)\binom{n+2}{3} \in \mathbb{Z}$. We distinguish four cases:
(i) If $6 \perp b$, then $c \equiv 0(\bmod b)$, contradicting $1 \leq c<b$.
(ii) If $2 \mid b$ and $3 \nmid b$, then c is a multiple of $b / 2$, i.e., $c=b / 2, n=1$. As n is also a multiple of $b / 2$, we get $b=2$, thus $c=1$. For $\beta^{2}=2 \beta+2$, we already know that $\gamma(\beta)<1$ (see Example 4.4).
(iii) If $3 \mid b$ and $2 \nmid b$, then c and n are multiples of $b / 3$. For $c=b / 3$ we have $n \notin \mathbb{Z}$. For $c=2 b / 3$, we have $n=2$, thus $b \in\{3,6\}$. However, $b=6$ contradicts $2 \nmid b$, and $b=3$ (i.e., $c=2$) contradicts $\binom{n+2}{3} c^{3}+n \equiv 0$ $(\bmod b)$.
(iv) If $6 \mid b$, then c and n are multiples of $b / 6$, thus $c \in\{b / 2,2 b / 3,5 b / 6\}$, $n \in\{1,2,5\}$. If $n=1$, then $b=6$, thus $c=3$, and $\binom{n+2}{3} c^{3}+n \not \equiv 0$ $(\bmod b)$. If $n=2$, then $b \in\{6,12\}$; we have excluded $b=6, c=4$; for $b=12, c=8$, we have $\binom{n+2}{3} c^{3}+n \not \equiv 0(\bmod b)$. If $n=5$, then $b \in\{6,30\}$; we have excluded $b=6, c=5$; for $b=30, c=24$, we have $\binom{n+2}{3} c^{3}+n \not \equiv 0(\bmod b)$.
5. The general case. In the general quadratic case where $1<\operatorname{gcd}(a, b)$ $<b$, the conditions of Theorem 2 need not be satisfied. This means that we have to rely on the more general Theorem 1, i.e., to compute $\inf _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j)}\left(\beta^{\prime}\right)$ and $\sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right)$.

We can derive, in a similar manner to Proposition 3.2, that for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\sup _{j \in \mathbb{Z}} P_{\boldsymbol{h}(j-\beta)}\left(\beta^{\prime}\right) \in \max _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j-\beta) \llbracket n \rrbracket}\left(\beta^{\prime}\right)+\left(\beta^{\prime}\right)^{n} \frac{b-1}{1-\left(\beta^{\prime}\right)^{2}}\left[\beta^{\prime}, 1\right] . \tag{5.1}
\end{equation*}
$$

Let now $s_{n} \geq 1$, for $n \in \mathbb{N}$, denote the smallest positive integer such that $s_{n} \in \beta^{n} \mathbb{Z}[\beta]$, and $r_{n}:=s_{n} / s_{n-1}$. Then $x, y \in \mathbb{Z}$ have a common prefix of length n if and only if $y-x \in s_{n} \mathbb{Z}$. Therefore, in both (3.5) and (5.1) we can take $\left\{0,1, \ldots, s_{n}-1\right\}$ instead of $\left\{0,1, \ldots, b^{n}-1\right\}$. Moreover, following Remark 4.3, we can further restrict to the sets

$$
\begin{aligned}
& J_{0}:=\{0\}, \quad J_{0}^{\prime}:=\{-\beta\}, \\
& J_{n}:=\left\{j \in J_{n-1}+s_{n-1}\left\{0,1, \ldots, r_{n}-1\right\}: P_{\boldsymbol{h}(j) \llbracket n \rrbracket}\left(\beta^{\prime}\right) \leq \mu_{n}+\left|\beta^{\prime}\right|^{n} \frac{b-1}{1+\beta^{\prime}}\right\}, \\
& J_{n}^{\prime}:=\left\{j \in J_{n-1}+s_{n-1}\left\{0,1, \ldots, r_{n}-1\right\}: P_{\boldsymbol{h}(j) \llbracket n \rrbracket}\left(\beta^{\prime}\right) \geq \nu_{n}-\left|\beta^{\prime}\right|^{n} \frac{b-1}{1+\beta^{\prime}}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{n} & :=\min _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j) \llbracket n \rrbracket}\left(\beta^{\prime}\right), \\
\nu_{n} & :=\max _{j \in\left\{0,1, \ldots, b^{n}-1\right\}} P_{\boldsymbol{h}(j-\beta) \llbracket n \rrbracket}\left(\beta^{\prime}\right) .
\end{aligned}
$$

We conclude by several open questions that arise in the study of rational numbers with purely periodic expansions:
(A) Prove or disprove that $\gamma(\beta)=1$ for a quadratic Pisot number $\beta>1$ satisfying $\beta^{2}=a \beta+b$ if and only if $a / b \in \mathbb{Z}$ and either $a \geq b^{2}$ or $(a, b) \in\{(24,6),(30,6)\}$.
(B) For which quadratic β do we have $\gamma(\beta)=0$? Can we drop the restrictions on a and b in Theorem 2? More specifically, is it true that $a<(1+\sqrt{5}) b / 2$ implies $\gamma(\beta)=0$?
(C) What is the structure of the prefixes of β-adic expansions of integers for a general quadratic β ?
(D) What about the cubic Pisot case? Akiyama and Scheicher AS05 showed how to compute $\gamma(\beta)$ for $\beta \approx 1.325$ the minimal Pisot number (or Plastic number) with $\beta^{3}=\beta+1$. Loridant et al. $\left[\mathrm{LM}^{+} 13\right]$ gave the contact graph of the β-tiles for cubic units, which could be used to determine $\gamma(\beta)$ for the units, in a similar way to what Akiyama and Scheicher did. The consideration of the β-adic spaces could then allow the results to be extended to non-units as well.

Acknowledgements. The first author acknowledges support by Grant Agency of the Czech Technical University in Prague grant SGS14/205/OHK4 $/ 3 \mathrm{~T} / 14$ and Czech Science Foundation grants $13-03538 \mathrm{~S}$ and $17-04703 \mathrm{Y}$. The second author acknowledges support by ANR/FWF project "FAN Fractals and Numeration" (ANR-12-IS01-0002, FWF grant I1136) and by ANR project "Dyna3S - Dynamique des algorithmes du pgcd" (ANR-13-BS02-0003).

References

$\left[\mathrm{AB}^{+} 08\right]$ S. Akiyama, G. Barat, V. Berthé, and A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions, Monatsh. Math. 155 (2008), 377-419.
[Aki98] S. Akiyama, Pisot numbers and greedy algorithm, in: Number Theory (Eger, 1996), de Gruyter, Berlin, 1998, 9-21.
[AS05] S. Akiyama and K. Scheicher, Intersecting two-dimensional fractals with lines, Acta Sci. Math. (Szeged) 71 (2005), 555-580.
[BS07] V. Berthé and A. Siegel, Purely periodic β-expansions in the Pisot non-unit case, J. Number Theory 127 (2007), 153-172.
[H197] M. Hama and T. Imahashi, Periodic β-expansions for certain classes of Pisot numbers, Comment. Math. Univ. St. Pauli 46 (1997), 103-116.
[IR05] S. Ito and H. Rao, Purely periodic β-expansions with Pisot unit base, Proc. Amer. Math. Soc. 133 (2005), 953-964.
[IS01] S. Ito and Y. Sano, On periodic β-expansions of Pisot numbers and Rauzy fractals, Osaka J. Math. 38 (2001), 349-368.
[IS02] S. Ito and Y. Sano, Substitutions, atomic surfaces, and periodic beta expansions, in: Analytic Number Theory (Beijing/Kyoto, 1999), Developments Math. 6, Kluwer, Dordrecht, 2002, 183-194.
$\left[\mathrm{LM}^{+} 13\right]$ B. Loridant, A. Messaoudi, P. Surer, and J. M. Thuswaldner, Tilings induced by a class of cubic Rauzy fractals, Theoret. Comput. Sci. 477 (2013), 6-31.
[MP13] Z. Masáková and E. Pelantová, Purely periodic expansions in systems with negative base, Acta Math. Hungar. 139 (2013), 208-227.
[MS14] M. Minervino and W. Steiner, Tilings for Pisot beta numeration, Indag. Math. (N.S.) 25 (2014), 745-773.
[Rén57] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
[Sch80] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278.

Tomáš Hejda
Department of Mathematics FNSPE
Czech Technical University in Prague
Trojanova 13
12000 Praha, Czech Republic
and
Department of Algebra MFF
Charles University
Sokolovská 49/83
18675 Praha, Czech Republic
E-mail: tohecz@gmail.com

Wolfgang Steiner
IRIF, CNRS UMR 8243 Université Paris Diderot - Paris 7 Case 7014
75205 Paris Cedex 13, France
E-mail: steiner@irif.fr

Abstract (will appear on the journal's web site only)

We study rational numbers with purely periodic Rényi β-expansions. For bases β satisfying $\beta^{2}=a \beta+b$ with b dividing a, we give a necessary and sufficient condition for all rational numbers $p / q \in[0,1)$ with $\operatorname{gcd}(q, b)=1$ to have a purely periodic β-expansion. We provide a simple algorithm for determining the infimum of $p / q \in[0,1)$ with $\operatorname{gcd}(q, b)=1$ and whose β-expansion is not purely periodic, which works for all quadratic Pisot numbers β.

[^0]: 2010 Mathematics Subject Classification: Primary 11A63; Secondary 11R06, 37B10.
 Key words and phrases: beta-expansion, periodic expansion, Rauzy fractal, quadratic Pisot number, finite place.
 Received 12 August 2015; revised 30 June 2017.
 Published online *.

