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Abstract

We consider positional numeration systems with negative real base −β, where β > 1, and
study the extremal representations in these systems, called here the greedy and lazy represen-
tations. We give algorithms for determination of minimal and maximal (−β)-representation
with respect to the alternate order. We also show that both extremal representations can
be obtained using the positive base β2 and a non-integer alphabet. This enables us to
characterize digit sequences admissible as greedy and lazy (−β)-representation. Such a
characterization allows us to study the set of uniquely representable numbers. In case that β
is the golden ratio, we give the characterization of digit sequences admissible as greedy and
lazy (−β)-representation using a set of forbidden strings.

1 Introduction

For any real base α with |α| > 1 and a finite alphabet of digits A ⊂ R, we consider a positional
numeration system. If x =

∑
i6k xiα

i with digits xi ∈ A, we say that x has an α-representation
in A. The assumption that every x ∈ R has a representation implies the condition on the
cardinality of the alphabet #A > |α|.

Rényi [8] showed that if α > 1 and A = {0, . . . dαe − 1}, then every positive x > 0 has a
representation. However, some numbers can have multiple representations. For example, in the
decimal system one has

1
2 = 0.5000000 . . . = 0.4999999 . . . , whereas 1

3 = 0.333333 . . .

If the base α is not an integer and the alphabet A is rich enough to represent all positive reals,
then almost all x > 0 have infinitely many representations and one can choose among them “the
nicest” one from some point of view.1

We consider the natural ordering of the alphabet and, for positive bases, the lexicographical
ordering of the representations. Amongst all representations of a given x ∈ R, we can choose
the smallest and largest ones with respect to the lexicographical ordering; they are called the
greedy and lazy representations. The study of the greedy representations started by Rényi. The
study of the lazy representations was initialized by Erdős, Joó and Komornik [4] and they were
extensively studied by Dajani and Kraaikamp [2].

The focus on the negative bases started by the work of Ito and Sadahiro in 2009 [5].
Representations in the negative base do not need the extra bit for the signum ±. A family of
transformations producing negative base representations of numbers for 1 < β < 2 is studied
in [1]. Among other, it is shown that although none of them gives the maximal representation
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in the alternate order, it is produced by a random algorithm, see Theorem 4.2. in [1]. In its
proof, one can find out that the greedy representation is obtained by periodic application of two
transformations.

In this contribution, we focus on negative bases −β, β > 1 in general, and we deduce
analogous result without introducing random (−β)-expansions. Our main result states that both
extremal representations can be obtained using the positive base β2 and a non-integer alphabet B
by application of a transformation of the form T (x) = β2x−D(x), where D(x) ∈ B (Theorem 4.1
and Proposition 4.2). Note that representations using a non-integer alphabet were considered by
Pedicini [7]. This enables us to exploit results of [6] for giving necessary and sufficient conditions
for identifying sequences admissible as greedy and lazy (−β)-expansions (Theorem 5.2). We
give examples of the golden mean φ ≈ 1.618 and the tribonacci constant µ ≈ 1.839. In the last
section, we discuss the uniqueness of the representations of numbers.

2 How to obtain α-representations of real numbers

In this chapter we recall a method for finding an α-representation of a given number with general
real base α, |α| > 1. It is clear that if we are able to find a representation for all numbers x from
some bounded interval J ⊂ R containing 0, then we are also able to find an α-representation
for any x ∈

⋃
k∈Z α

kJ , i.e. for any real number (if 0 is inside J or the base α is negative)
or for all positive reals or all negative reals (if 0 is a boundary point of J and the base α is
positive). Our definition below is a restriction of the very general numeration system considered
by Thurston [10], which permits for the base also complex numbers.

Definition 2.1. Given a base α ∈ R, |α| > 1, a finite alphabet A ⊂ R and a bounded interval
J 3 0. Let D : J 7→ A be a mapping such that the transformation defined by T (x) = αx−D(x)
maps J 7→ J . The corresponding α-representation of x is a mapping d = dα,J,D : J 7→ AN,

dα,J,D(x) = x1x2x3x4 · · · , where xk = D
(
T k−1(x)

)
.

Both Rényi and Ito-Sadahiro systems [8, 5] are “order-preserving”, provided that we choose
a suitable order on the set of representations.

Definition 2.2. Let A ⊂ R be a finite alphabet ordered by the natural order “<” in R. Let
x1x2x3 · · · and y1y2y3 · · · be two different strings from AN. Denote k = min{i | xi 6= yi}. We
write
• x1x2x3 · · · ≺lex y1y2y3 · · · if xk < yk and say that x1x2x3 · · · is smaller than y1y2y3 · · · in

the lexicographical order;
• x1x2x3 · · · ≺alt y1y2y3 · · · if (−1)kxk < (−1)kyk and say that x1x2x3 · · · is smaller than
y1y2y3 · · · in the alternate order.

Proposition 2.3. Let α, A, J and D be as in Definition 2.1. Let numbers x, y ∈ J and let
dα,J,D(x) = x1x2x3 · · · and dα,J,D(y) = y1y2y3 · · · be their α-representations.
• If α > 1 and D(x) is non-decreasing then

x < y ⇐⇒ x1x2x3 · · · ≺lex y1y2y3 · · · .
• If α < −1 and D(x) is non-increasing then

x < y ⇐⇒ x1x2x3 · · · ≺alt y1y2y3 · · · .
For a given base α and an alphabet A ⊂ R we put

Jα,A =
{ ∞∑
i=1

aiα
−i
∣∣∣∣ ai ∈ A} ,

the set of numbers representable with negative powers of α and the alphabet A, and for any
x ∈ Jα,A, we denote the set of its α-representations in A by

Rα,A(x) =
{
x1x2x3 · · ·

∣∣x =
∑∞

i=1xiα
−i and xi ∈ A

}
.

The Proposition 2.3 suggests how to choose a suitable ordering on the set Rα,A(x).



Definition 2.4. Let α be a real base with |α| > 1 and let A ⊂ R be a finite alphabet.
• Let α < −1 and x ∈ Jα,A. Then the maximal and minimal elements of Rα,A(x) with

respect to the alternate order are called the greedy and lazy α-representations of x in the
alphabet A, respectively.
• Let α > 1 and x ∈ Jα,A. Then the maximal and minimal elements of Rα,A(x) with respect

to the lexicographical order are called the greedy and lazy α-representations of x in the
alphabet A, respectively.

3 Extremal representations in negative base systems

Let us now fix a base α = −β for some non-integer β > 1, β /∈ N, and an alphabet A =
{0, 1, . . . , bβc}. Using the same arguments as in [7] it can be shown that the set I of numbers
representable in this system is an interval, namely

I =
[−βbβc
β2 − 1

,
bβc
β2 − 1

]
=: [l, r]. (1)

The interval I (i.e. its boundary points) depend on the base β, however, we avoid it in the
notation for simplicity. We denote by Ia the set of numbers which have a (−β)-representation
starting with the digit a ∈ A. Then Ia = a

−β + 1
−β I =

[
a
−β + r

−β ,
a
−β + l

−β

]
and I can be written

as a (not necessarily disjoint) union of intervals I =
⋃
a∈A Ia. Obviously, we have −βx− a ∈ I

for every x ∈ Ia. Note that intervals Ia overlap, but not three at a time.
We define

Dm(x) =

{
bβc for x ∈ Ibβc,
a for x ∈ Ia \ Ia+1, a ∈ A, a 6= bβc.

and

Dv(x) =

{
0 for x ∈ I0,
a for x ∈ Ia \ Ia−1, a ∈ A, a 6= 0.

and corresponding transformations

Tm(x) = −βx−Dm(x) and Tv(x) = −βx−Dv(x) .

Proposition 3.1. Let x ∈ I.

• Denote ε0 = x and for all i > 0 put

z2i+1 = Dm(ε2i), ε2i+1 = Tm(ε2i) and z2i+2 = Dv(ε2i+1), ε2i+2 = Tv(ε2i+1).

Then z1z2z3 · · · is the greedy (−β)-representation of x.
• Denote η0 = x and for all i > 0 put

y2i+1 = Dv(η2i), η2i+1 = Tv(η2i) and y2i+2 = Dm(η2i+1), η2i+2 = Tm(η2i+1).

Then y1y2y3 · · · is the lazy (−β)-representation of x.

For β ∈ (1, 2), the description of greedy (−β)-representations of Proposition 3.1 can be deduced
from the proof of Theorem 4.2 in [1], albeit the statement of the theorem is vague, namely that
the greedy (−β)-representation can be generated by a “random sequence of transformations”.

4 Representations in base β2 with non-integer alphabets

The algorithm for obtaining extremal (−β)-representations of a number x, described in Proposi-
tion 3.1, does not fit in the scheme of the Definition 2.1 for negative base α = −β. In particular,
there is no transformation T (x) = −βx−D(x) which generates for every x the greedy (or lazy)
(−β)-representation. This fact complicates the description of digit strings occurring as greedy or
lazy representations. Nevertheless, we arrive to overcome this handicap.
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Figure 1: The greedy and lazy transformations TG and TL. This figure corresponds to a base
−β ∈ (−3,−2). Here, δba = b

−β + a
(−β)2

+ r
(−β)2

.

Defining TG := TmTv and TL := TvTm we obtain transformations I → I which produce the
greedy and lazy (−β)-representations. The price to be paid is that the digit assigning functions
DG and DL are not integer-valued. Precisely, DG, DL : I → B = {−bβ + a | a, b ∈ A}. This
alphabet B has (#A)2 distinct elements, since we consider only β /∈ N.

Let us describe the mappings TG and DG (resp. TL and DL) explicitly. Put

γba =
b

−β
+

a

(−β)2
+

l

(−β)2
for any a, b ∈ A

and DG(x) = max
{
−bβ + a

∣∣ a, b ∈ A and γba 6 x
}
. (2)

Notice that the set in the definition of DG is non-empty since γbβc0 = l 6 x for all x ∈ I.
Defining a morphism ψ : B∗ → A∗ by

ψ(−bβ + a) = ba,

we can state the following theorem.

Theorem 4.1. Let β > 1, β /∈ N, A = {0, 1, . . . , bβc}. Define on the interval I from (1) the
transformation TG : I → I by the prescription

TG(x) = β2x−DG(x) ,

where DG : I → B is given by (2). For an x ∈ I denote by dG(x) the corresponding β2-
representation of x. Then

• dG(x) is the greedy β2-representation of x in the alphabet B.
• ψ

(
dG(x)

)
is the greedy (−β)-representation of x in the alphabet A.

Using the following generalization of result in [4], we can obtain the lazy (−β)-representations
of numbers from the greedy ones, and in the following text, we will mainly concentrate on the
properties of the greedy transformation TG.

Proposition 4.2. Let z1z2z3z4 · · · be the greedy (−β)-representation of a number z ∈ I and let
y1y2y3y4 · · · be the lazy (−β)-representation of a number y ∈ I. Then

yi + zi = bβc for every i > 1 ⇐⇒ y + z = − bβc
β + 1

.

For an example of transformations TG, TL, see Figure 1.

5 Admissibility

The transformation TG has the following property.



Lemma 5.1. For every x ∈ [l, l+1) one has TG(x) ∈ [l, l+1). Moreover, for every x ∈ I\[l, l+1),
x 6= r, there exists an exponent k ∈ N such that T kG(x) ∈ [l, l + 1).

The above fact implies that, in general, some digits from the alphabet B do not appear
infinitely many times in the greedy β2-representation of any number x ∈ I. Let AG ⊆ B comprise
those digits that can appear infinitely many times, i.e. AG =

{
DG(x)

∣∣x ∈ [l, l+ 1)
}

, analogously
we put AL =

{
DL

∣∣x ∈ (r − 1, r]
}

.
In order to formulate the result about admissible greedy representations which is derived

using a result of [6], we introduce the left-continuous mappings D∗G : I → B, T ∗G : I → I and
d∗G : I → AN as

D∗G(x) = lim
ε→0+

DG(x− ε) , T ∗G(x) = lim
ε→0+

TG(x− ε) , d∗G(x) = lim
ε→0+

dG(x− ε) .

Theorem 5.2. Let X1X2X3 · · · ∈ AN
G. Then there exists an x ∈ [l, l + 1) such that dG(x) =

X1X2X3 · · · if and only if for every k > 1

Xk+1Xk+2Xk+3 · · · ≺

{
d∗G
(
T ∗G(l + 1)

)
if Xk = maxAG,

d∗G
(
l + {β}

)
if Xk = −bβ + bβc, Xk 6= maxAG.

Remark 5.3. Using Proposition 4.2 one can derive an analogous necessary and sufficient
condition for admissible lazy β2-representations X1X2X3 · · · of numbers in x ∈ (r − 1, r] over
the alphabet AL = bβc − AG.

6 Negative golden ratio

Let us illustrate the previous results and their implications on the example of the negative base
−β where β = φ = 1+

√
5

2 ≈ 1.618 is the golden ratio. Real numbers representable in base −φ
over the alphabet A = {0, 1} form the interval J−φ,A = I =

[
−1, 1

φ

]
= [l, r].

The greedy and lazy (−φ)-representation can be obtained from the greedy and lazy φ2-
representation over the alphabet B = {−φ,−φ+ 1, 0, 1}, applying the morphism ψ : B∗ → A∗
given by

ψ(−φ) = 10, ψ(−φ+ 1) = 11, ψ(0) = 00, ψ(1) = 01.

The greedy and lazy φ2-representations are generated by the transformation

TG(x) = φ2x−DG(x) , TL(x) = φ2x−DL(x) , x ∈
[
−1, 1

φ

]
,

where the digit assigning maps DG and DL are

DG(x) =


−φ for x ∈

[
−1,− 1

φ

)
,

−φ+ 1 for x ∈
[
− 1
φ ,−

1
φ2

)
,

0 for x ∈
[
− 1
φ2 , 0

)
,

1 for x ∈
[
0, 1

φ

]
,

DL(x) =


−φ for x ∈

[
−1,− 1

φ2

]
,

−φ+ 1 for x ∈
(
− 1
φ2 , 0

]
,

0 for x ∈
(
0, 1

φ3

]
,

1 for x ∈
(

1
φ3 ,

1
φ

]
.

The graph of the transformations TG, TL restricted to the intervals [l, l+ 1) = [−1, 0), (r− 1, r] =
( 1
φ2 ,− 1

φ ] are drawn in Figure 2.
Let us now apply Theorem 5.2 to the case β = φ. Denote for simplicity the digits of the

alphabet B = {−φ,−φ+ 1, 0, 1} by

A = −φ < B = −φ+ 1 < C = 0 < D = 1.

With this notation, we have AG = {A,B,C} and AL = {B,C,D}.

Proposition 6.1. A string X1X2X3 · · · over the alphabet AG = {A,B,C} is the greedy φ2-
representation of a number x ∈ [−1, 0) if and only if it does not contain a factor from the set
{BC,Bω, Cω}.

A string X1X2X3 · · · over the alphabet AL = {B,C,D} is the lazy φ2-representation of a
number x ∈ (− 1

φ2 ,
1
φ ] if and only if it does not contain a factor from the set {CB,Bω, Cω}.
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Figure 2: Transformations TG (left), TL (middle) and T 2
IS (right) in the base φ2 that correspond

to the greedy, lazy and Ito-Sadahiro representations in the base −φ.

Corollary 6.2. The points x = −1 and x = 1
φ are the only points in [−1, 1

φ ] which have a unique
(−φ)-representation over the alphabet {0, 1}.

Proposition 6.1 provides a combinatorial criterion for admissibility of representations in base
φ2 in the non-integer alphabet AG. One can also rewrite the admissibility of a digit string in
base −φ using forbidden strings in the original alphabet {0, 1}.

Proposition 6.3. A digit string x1x2x3 · · · over the alphabet {0, 1} is a greedy (−φ)-representa-
tion of some x ∈ [−1, 0) if and only if

(i) it does not start with the prefix 12k0, nor 02k−11, k > 1;
(ii) it does not end with the suffix 0ω nor 1ω;

(iii) it does not contain the factor 102k1, nor 012k0, k > 1.

Corollary 6.4. The Ito-Sadahiro (−φ)-representation introduced in [5] is not extremal for any
x ∈

[
− 1
φ ,

1
φ2

)
.

For the plots of the greedy, lazy and Ito-Sadahiro representations, see Figure 2.

7 Unique (−β)-representations

In [1], it is shown that for 1 < β < 2, the set of numbers with a unique (−β)-representation
is of Lebesgue measure zero. The authors also show that for β < φ, such numbers are only
two. Let us show that although the measure is always zero, the set of numbers with unique
(−β)-representation can be uncountable.

Proposition 7.1. Let µ be the Tribonacci constant, i.e. the real root µ ≈ 1.839 of x3−x2−x−1.
Denote A = −µ, B = −µ+ 1, C = 0, D = 1 the alphabet B for this particular case. Then all
strings over the letters {B,C} are admissible as both greedy and lazy (−µ)-representations.

We can prove an analogous statement for all sufficiently large bases.

Theorem 7.2. Let β > 1 +
√

3 ≈ 2.732, β /∈ N. Then there exist uncountably many numbers in
J−β,A having a unique (−β)-representation over the alphabet A = {0, 1, . . . , bβc}.

8 Conclusions

Our main tool in this paper was to view the (−β)-representations in the alphabet A ={
0, 1, . . . , bβc

}
as strings of pairs of digits in A, which amounts, in fact, to considering the

alphabet B = −β · A + A and the base β2. Such an approach puts forward the utility of
studying number systems with positive base and a non-integer alphabet, as was already started
by Pedicini [7] or Kalle and Steiner [6]. Obtaining new results for such systems – for example
analogous to those of de Vries and Komornik [3] or Schmidt [9] would probably contribute also
to the knowledge about negative base systems.
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[8] Alfréd Rényi. Representations for real numbers and their ergodic properties. Acta Math.
Acad. Sci. Hungar, 8:477–493, 1957.

[9] Klaus Schmidt. On periodic expansions of Pisot numbers and Salem numbers. Bull. London
Math. Soc., 12(4):269–278, 1980.

[10] William Thurston. Groups, tilings, and Finite state automata. AMS Colloquium Lecture
Notes, American Mathematical Society, Boulder, 1989.


