On the negative base greedy and lazy representations

Tomáš Hejda^{†,}* Zuzana Masáková[†] Edita Pelantová[†]

June 2012

Abstract

We consider positional numeration systems with negative real base $-\beta$, where $\beta > 1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$ -representation with respect to the alternate order. We also show that both extremal representations can be obtained using the positive base β^2 and a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$ -representation. Such a characterization allows us to study the set of uniquely representable numbers. In case that β is the golden ratio, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$ -representation using a set of forbidden strings.

1 Introduction

For any real base α with $|\alpha| > 1$ and a finite alphabet of digits $\mathcal{A} \subset \mathbb{R}$, we consider a positional numeration system. If $x = \sum_{i \leq k} x_i \alpha^i$ with digits $x_i \in \mathcal{A}$, we say that x has an α -representation in \mathcal{A} . The assumption that every $x \in \mathbb{R}$ has a representation implies the condition on the cardinality of the alphabet $\#\mathcal{A} \geq |\alpha|$.

Rényi [8] showed that if $\alpha > 1$ and $\mathcal{A} = \{0, \dots \lceil \alpha \rceil - 1\}$, then every positive $x \ge 0$ has a representation. However, some numbers can have multiple representations. For example, in the decimal system one has

 $\frac{1}{2} = 0.5000000 \dots = 0.4999999 \dots$, whereas $\frac{1}{3} = 0.333333 \dots$

If the base α is not an integer and the alphabet \mathcal{A} is rich enough to represent all positive reals, then almost all $x \ge 0$ have infinitely many representations and one can choose among them "the nicest" one from some point of view.¹

We consider the natural ordering of the alphabet and, for positive bases, the lexicographical ordering of the representations. Amongst all representations of a given $x \in \mathbb{R}$, we can choose the smallest and largest ones with respect to the lexicographical ordering; they are called the greedy and lazy representations. The study of the greedy representations started by Rényi. The study of the lazy representations was initialized by Erdős, Joó and Komornik [4] and they were extensively studied by Dajani and Kraaikamp [2].

The focus on the negative bases started by the work of Ito and Sadahiro in 2009 [5]. Representations in the negative base do not need the extra bit for the signum \pm . A family of transformations producing negative base representations of numbers for $1 < \beta < 2$ is studied in [1]. Among other, it is shown that although none of them gives the maximal representation

^{*}Corresponding author, tohecz@gmail.com

[†]Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University in Prague, supported by Grant Agency of the Czech Republic $GA\check{C}R$ 201/09/0584, Ministry of Education, Youth and Sports of the Czech Republic MSM6840770039, Grant Agency of the Czech Technical University in Prague SGS11/162/OHK4/3T/14

¹Note that although most people prefer writing $\frac{1}{2} = 0.5$, the shopkeepers consider the representation 0.4999... nicer than 0.5000... for $x = \frac{1}{2}$.

in the alternate order, it is produced by a random algorithm, see Theorem 4.2. in [1]. In its proof, one can find out that the greedy representation is obtained by periodic application of two transformations.

In this contribution, we focus on negative bases $-\beta$, $\beta > 1$ in general, and we deduce analogous result without introducing random $(-\beta)$ -expansions. Our main result states that both extremal representations can be obtained using the positive base β^2 and a non-integer alphabet \mathcal{B} by application of a transformation of the form $T(x) = \beta^2 x - D(x)$, where $D(x) \in \mathcal{B}$ (Theorem 4.1 and Proposition 4.2). Note that representations using a non-integer alphabet were considered by Pedicini [7]. This enables us to exploit results of [6] for giving necessary and sufficient conditions for identifying sequences admissible as greedy and lazy $(-\beta)$ -expansions (Theorem 5.2). We give examples of the golden mean $\phi \approx 1.618$ and the tribonacci constant $\mu \approx 1.839$. In the last section, we discuss the uniqueness of the representations of numbers.

2 How to obtain α -representations of real numbers

In this chapter we recall a method for finding an α -representation of a given number with general real base α , $|\alpha| > 1$. It is clear that if we are able to find a representation for all numbers x from some bounded interval $J \subset \mathbb{R}$ containing 0, then we are also able to find an α -representation for any $x \in \bigcup_{k \in \mathbb{Z}} \alpha^k J$, i.e. for any real number (if 0 is inside J or the base α is negative) or for all positive reals or all negative reals (if 0 is a boundary point of J and the base α is positive). Our definition below is a restriction of the very general numeration system considered by Thurston [10], which permits for the base also complex numbers.

Definition 2.1. Given a base $\alpha \in \mathbb{R}$, $|\alpha| > 1$, a finite alphabet $\mathcal{A} \subset \mathbb{R}$ and a bounded interval $J \ni 0$. Let $D: J \mapsto \mathcal{A}$ be a mapping such that the transformation defined by $T(x) = \alpha x - D(x)$ maps $J \mapsto J$. The corresponding α -representation of x is a mapping $d = d_{\alpha,J,D}: J \mapsto \mathcal{A}^{\mathbb{N}}$,

$$d_{\alpha,J,D}(x) = x_1 x_2 x_3 x_4 \cdots$$
, where $x_k = D(T^{k-1}(x))$.

Both Rényi and Ito-Sadahiro systems [8, 5] are "order-preserving", provided that we choose a suitable order on the set of representations.

Definition 2.2. Let $\mathcal{A} \subset \mathbb{R}$ be a finite alphabet ordered by the natural order "<" in \mathbb{R} . Let $x_1x_2x_3\cdots$ and $y_1y_2y_3\cdots$ be two different strings from $\mathcal{A}^{\mathbb{N}}$. Denote $k = \min\{i \mid x_i \neq y_i\}$. We write

- $x_1 x_2 x_3 \cdots \prec_{\text{lex}} y_1 y_2 y_3 \cdots$ if $x_k < y_k$ and say that $x_1 x_2 x_3 \cdots$ is smaller than $y_1 y_2 y_3 \cdots$ in the lexicographical order;
- $x_1x_2x_3\cdots \prec_{\text{alt}} y_1y_2y_3\cdots$ if $(-1)^kx_k < (-1)^ky_k$ and say that $x_1x_2x_3\cdots$ is smaller than $y_1y_2y_3\cdots$ in the alternate order.

Proposition 2.3. Let α , \mathcal{A} , J and D be as in Definition 2.1. Let numbers $x, y \in J$ and let $d_{\alpha,J,D}(x) = x_1 x_2 x_3 \cdots$ and $d_{\alpha,J,D}(y) = y_1 y_2 y_3 \cdots$ be their α -representations.

• If $\alpha > 1$ and D(x) is non-decreasing then

$$\langle y \iff x_1 x_2 x_3 \cdots \prec_{\text{lex}} y_1 y_2 y_3 \cdots$$

• If $\alpha < -1$ and D(x) is non-increasing then

$$x < y \quad \iff \quad x_1 x_2 x_3 \cdots \prec_{\text{alt}} y_1 y_2 y_3 \cdots$$

For a given base α and an alphabet $\mathcal{A} \subset \mathbb{R}$ we put

$$J_{\alpha,\mathcal{A}} = \left\{ \sum_{i=1}^{\infty} a_i \alpha^{-i} \, \middle| \, a_i \in \mathcal{A} \right\},\,$$

the set of numbers representable with negative powers of α and the alphabet \mathcal{A} , and for any $x \in J_{\alpha,\mathcal{A}}$, we denote the set of its α -representations in \mathcal{A} by

$$R_{\alpha,\mathcal{A}}(x) = \left\{ x_1 x_2 x_3 \cdots \mid x = \sum_{i=1}^{\infty} x_i \alpha^{-i} \text{ and } x_i \in \mathcal{A} \right\}$$

The Proposition 2.3 suggests how to choose a suitable ordering on the set $R_{\alpha,\mathcal{A}}(x)$.

Definition 2.4. Let α be a real base with $|\alpha| > 1$ and let $\mathcal{A} \subset \mathbb{R}$ be a finite alphabet.

- Let $\alpha < -1$ and $x \in J_{\alpha,\mathcal{A}}$. Then the maximal and minimal elements of $R_{\alpha,\mathcal{A}}(x)$ with respect to the alternate order are called the greedy and lazy α -representations of x in the alphabet \mathcal{A} , respectively.
- Let $\alpha > 1$ and $x \in J_{\alpha,\mathcal{A}}$. Then the maximal and minimal elements of $R_{\alpha,\mathcal{A}}(x)$ with respect to the lexicographical order are called the greedy and lazy α -representations of x in the alphabet \mathcal{A} , respectively.

3 Extremal representations in negative base systems

Let us now fix a base $\alpha = -\beta$ for some non-integer $\beta > 1$, $\beta \notin \mathbb{N}$, and an alphabet $\mathcal{A} = \{0, 1, \dots, \lfloor\beta\rfloor\}$. Using the same arguments as in [7] it can be shown that the set I of numbers representable in this system is an interval, namely

$$I = \left[\frac{-\beta\lfloor\beta\rfloor}{\beta^2 - 1}, \frac{\lfloor\beta\rfloor}{\beta^2 - 1}\right] =: [l, r].$$
(1)

The interval I (i.e. its boundary points) depend on the base β , however, we avoid it in the notation for simplicity. We denote by I_a the set of numbers which have a $(-\beta)$ -representation starting with the digit $a \in \mathcal{A}$. Then $I_a = \frac{a}{-\beta} + \frac{1}{-\beta}I = \begin{bmatrix} \frac{a}{-\beta} + \frac{r}{-\beta}, \frac{a}{-\beta} + \frac{l}{-\beta} \end{bmatrix}$ and I can be written as a (not necessarily disjoint) union of intervals $I = \bigcup_{a \in \mathcal{A}} I_a$. Obviously, we have $-\beta x - a \in I$ for every $x \in I_a$. Note that intervals I_a overlap, but not three at a time.

We define

$$D_m(x) = \begin{cases} \lfloor \beta \rfloor & \text{for } x \in I_{\lfloor \beta \rfloor}, \\ a & \text{for } x \in I_a \setminus I_{a+1}, \ a \in \mathcal{A}, \ a \neq \lfloor \beta \rfloor. \end{cases}$$

and

$$D_v(x) = \begin{cases} 0 & \text{for } x \in I_0, \\ a & \text{for } x \in I_a \setminus I_{a-1}, \ a \in \mathcal{A}, \ a \neq 0. \end{cases}$$

and corresponding transformations

$$T_m(x) = -\beta x - D_m(x)$$
 and $T_v(x) = -\beta x - D_v(x)$.

Proposition 3.1. Let $x \in I$.

• Denote $\varepsilon_0 = x$ and for all $i \ge 0$ put

$$z_{2i+1} = D_m(\varepsilon_{2i}), \ \varepsilon_{2i+1} = T_m(\varepsilon_{2i}) \quad and \quad z_{2i+2} = D_v(\varepsilon_{2i+1}), \ \varepsilon_{2i+2} = T_v(\varepsilon_{2i+1}).$$

- Then $z_1 z_2 z_3 \cdots$ is the greedy $(-\beta)$ -representation of x.
- Denote $\eta_0 = x$ and for all $i \ge 0$ put

$$y_{2i+1} = D_v(\eta_{2i}), \ \eta_{2i+1} = T_v(\eta_{2i})$$
 and $y_{2i+2} = D_m(\eta_{2i+1}), \ \eta_{2i+2} = T_m(\eta_{2i+1}).$
Then $y_1y_2y_3\cdots$ is the lazy $(-\beta)$ -representation of x .

For $\beta \in (1, 2)$, the description of greedy $(-\beta)$ -representations of Proposition 3.1 can be deduced from the proof of Theorem 4.2 in [1], albeit the statement of the theorem is vague, namely that the greedy $(-\beta)$ -representation can be generated by a "random sequence of transformations".

4 Representations in base β^2 with non-integer alphabets

The algorithm for obtaining extremal $(-\beta)$ -representations of a number x, described in Proposition 3.1, does not fit in the scheme of the Definition 2.1 for negative base $\alpha = -\beta$. In particular, there is no transformation $T(x) = -\beta x - D(x)$ which generates for every x the greedy (or lazy) $(-\beta)$ -representation. This fact complicates the description of digit strings occurring as greedy or lazy representations. Nevertheless, we arrive to overcome this handicap.

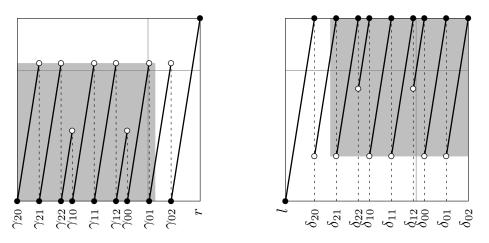


Figure 1: The greedy and lazy transformations T_G and T_L . This figure corresponds to a base $-\beta \in (-3, -2)$. Here, $\delta_{ba} = \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{r}{(-\beta)^2}$.

Defining $T_G := T_m T_v$ and $T_L := T_v T_m$ we obtain transformations $I \to I$ which produce the greedy and lazy $(-\beta)$ -representations. The price to be paid is that the digit assigning functions D_G and D_L are not integer-valued. Precisely, $D_G, D_L : I \to \mathcal{B} = \{-b\beta + a \mid a, b \in \mathcal{A}\}$. This alphabet \mathcal{B} has $(\#\mathcal{A})^2$ distinct elements, since we consider only $\beta \notin \mathbb{N}$.

Let us describe the mappings T_G and D_G (resp. T_L and D_L) explicitly. Put

$$\gamma_{ba} = \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{l}{(-\beta)^2} \quad \text{for any } a, b \in \mathcal{A}$$

and $D_G(x) = \max\{-b\beta + a \mid a, b \in \mathcal{A} \text{ and } \gamma_{ba} \leqslant x\}.$ (2)

Notice that the set in the definition of D_G is non-empty since $\gamma_{\lfloor\beta\rfloor 0} = l \leq x$ for all $x \in I$.

Defining a morphism $\psi : \mathcal{B}^* \to \mathcal{A}^*$ by

$$\psi(-b\beta + a) = ba$$

we can state the following theorem.

Theorem 4.1. Let $\beta > 1$, $\beta \notin \mathbb{N}$, $\mathcal{A} = \{0, 1, \dots, \lfloor \beta \rfloor\}$. Define on the interval I from (1) the transformation $T_G : I \to I$ by the prescription

$$T_G(x) = \beta^2 x - D_G(x) \,,$$

where $D_G : I \to \mathcal{B}$ is given by (2). For an $x \in I$ denote by $d_G(x)$ the corresponding β^2 -representation of x. Then

- $d_G(x)$ is the greedy β^2 -representation of x in the alphabet \mathcal{B} .
- $\psi(d_G(x))$ is the greedy $(-\beta)$ -representation of x in the alphabet \mathcal{A} .

Using the following generalization of result in [4], we can obtain the lazy $(-\beta)$ -representations of numbers from the greedy ones, and in the following text, we will mainly concentrate on the properties of the greedy transformation T_G .

Proposition 4.2. Let $z_1z_2z_3z_4\cdots$ be the greedy $(-\beta)$ -representation of a number $z \in I$ and let $y_1y_2y_3y_4\cdots$ be the lazy $(-\beta)$ -representation of a number $y \in I$. Then

$$y_i + z_i = \lfloor \beta \rfloor$$
 for every $i \ge 1$ \iff $y + z = -\frac{\lfloor \beta \rfloor}{\beta + 1}$

For an example of transformations T_G , T_L , see Figure 1.

5 Admissibility

The transformation T_G has the following property.

Lemma 5.1. For every $x \in [l, l+1)$ one has $T_G(x) \in [l, l+1)$. Moreover, for every $x \in I \setminus [l, l+1)$, $x \neq r$, there exists an exponent $k \in \mathbb{N}$ such that $T_G^k(x) \in [l, l+1)$.

The above fact implies that, in general, some digits from the alphabet \mathcal{B} do not appear infinitely many times in the greedy β^2 -representation of any number $x \in I$. Let $\mathcal{A}_G \subseteq \mathcal{B}$ comprise those digits that can appear infinitely many times, i.e. $\mathcal{A}_G = \{D_G(x) \mid x \in [l, l+1)\}$, analogously we put $\mathcal{A}_L = \{D_L \mid x \in (r-1, r]\}$.

In order to formulate the result about admissible greedy representations which is derived using a result of [6], we introduce the left-continuous mappings $D_G^*: I \to \mathcal{B}, T_G^*: I \to I$ and $d_G^*: I \to \mathcal{A}^{\mathbb{N}}$ as

$$D_G^*(x) = \lim_{\varepsilon \to 0+} D_G(x - \varepsilon), \quad T_G^*(x) = \lim_{\varepsilon \to 0+} T_G(x - \varepsilon), \quad d_G^*(x) = \lim_{\varepsilon \to 0+} d_G(x - \varepsilon).$$

Theorem 5.2. Let $X_1X_2X_3 \cdots \in \mathcal{A}_G^{\mathbb{N}}$. Then there exists an $x \in [l, l+1)$ such that $d_G(x) = X_1X_2X_3 \cdots$ if and only if for every $k \ge 1$

$$X_{k+1}X_{k+2}X_{k+3}\cdots \prec \begin{cases} d_G^*(T_G^*(l+1)) & \text{if } X_k = \max \mathcal{A}_G, \\ d_G^*(l+\{\beta\}) & \text{if } X_k = -b\beta + \lfloor \beta \rfloor, \ X_k \neq \max \mathcal{A}_G. \end{cases}$$

Remark 5.3. Using Proposition 4.2 one can derive an analogous necessary and sufficient condition for admissible lazy β^2 -representations $X_1X_2X_3\cdots$ of numbers in $x \in (r-1,r]$ over the alphabet $\mathcal{A}_L = \lfloor \beta \rfloor - \mathcal{A}_G$.

6 Negative golden ratio

Let us illustrate the previous results and their implications on the example of the negative base $-\beta$ where $\beta = \phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio. Real numbers representable in base $-\phi$ over the alphabet $\mathcal{A} = \{0, 1\}$ form the interval $J_{-\phi, \mathcal{A}} = I = \left[-1, \frac{1}{\phi}\right] = [l, r]$.

The greedy and lazy $(-\phi)$ -representation can be obtained from the greedy and lazy ϕ^2 representation over the alphabet $\mathcal{B} = \{-\phi, -\phi + 1, 0, 1\}$, applying the morphism $\psi : \mathcal{B}^* \to \mathcal{A}^*$ given by

$$\psi(-\phi) = 10, \quad \psi(-\phi+1) = 11, \quad \psi(0) = 00, \quad \psi(1) = 01.$$

The greedy and lazy ϕ^2 -representations are generated by the transformation

$$T_G(x) = \phi^2 x - D_G(x), \quad T_L(x) = \phi^2 x - D_L(x), \quad x \in \left[-1, \frac{1}{\phi}\right],$$

where the digit assigning maps D_G and D_L are

$$D_G(x) = \begin{cases} -\phi & \text{for } x \in \left[-1, -\frac{1}{\phi}\right], \\ -\phi + 1 & \text{for } x \in \left[-\frac{1}{\phi}, -\frac{1}{\phi^2}\right], \\ 0 & \text{for } x \in \left[-\frac{1}{\phi^2}, 0\right], \\ 1 & \text{for } x \in \left[0, \frac{1}{\phi}\right], \end{cases} \quad D_L(x) = \begin{cases} -\phi & \text{for } x \in \left[-1, -\frac{1}{\phi^2}\right], \\ -\phi + 1 & \text{for } x \in \left(-\frac{1}{\phi^2}, 0\right], \\ 0 & \text{for } x \in \left(0, \frac{1}{\phi^3}\right], \\ 1 & \text{for } x \in \left[0, \frac{1}{\phi}\right], \end{cases}$$

The graph of the transformations T_G , T_L restricted to the intervals [l, l+1) = [-1, 0), $(r-1, r] = (\frac{1}{\phi^2}, -\frac{1}{\phi}]$ are drawn in Figure 2.

Let us now apply Theorem 5.2 to the case $\beta = \phi$. Denote for simplicity the digits of the alphabet $\mathcal{B} = \{-\phi, -\phi + 1, 0, 1\}$ by

$$A = -\phi$$
 < $B = -\phi + 1$ < $C = 0$ < $D = 1$.

With this notation, we have $\mathcal{A}_G = \{A, B, C\}$ and $\mathcal{A}_L = \{B, C, D\}$.

Proposition 6.1. A string $X_1X_2X_3\cdots$ over the alphabet $\mathcal{A}_G = \{A, B, C\}$ is the greedy ϕ^2 -representation of a number $x \in [-1, 0)$ if and only if it does not contain a factor from the set $\{BC, B^{\omega}, C^{\omega}\}$.

A string $X_1X_2X_3\cdots$ over the alphabet $\mathcal{A}_L = \{B, C, D\}$ is the lazy ϕ^2 -representation of a number $x \in (-\frac{1}{\phi^2}, \frac{1}{\phi}]$ if and only if it does not contain a factor from the set $\{CB, B^{\omega}, C^{\omega}\}$.

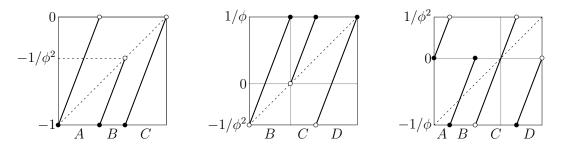


Figure 2: Transformations T_G (left), T_L (middle) and T_{IS}^2 (right) in the base ϕ^2 that correspond to the greedy, lazy and Ito-Sadahiro representations in the base $-\phi$.

Corollary 6.2. The points x = -1 and $x = \frac{1}{\phi}$ are the only points in $[-1, \frac{1}{\phi}]$ which have a unique $(-\phi)$ -representation over the alphabet $\{0, 1\}$.

Proposition 6.1 provides a combinatorial criterion for admissibility of representations in base ϕ^2 in the non-integer alphabet \mathcal{A}_G . One can also rewrite the admissibility of a digit string in base $-\phi$ using forbidden strings in the original alphabet $\{0, 1\}$.

Proposition 6.3. A digit string $x_1x_2x_3\cdots$ over the alphabet $\{0,1\}$ is a greedy $(-\phi)$ -representation of some $x \in [-1,0)$ if and only if

- (i) it does not start with the prefix $1^{2k}0$, nor $0^{2k-1}1$, $k \ge 1$;
- (ii) it does not end with the suffix 0^{ω} nor 1^{ω} ;
- (iii) it does not contain the factor $10^{2k}1$, nor $01^{2k}0$, $k \ge 1$.

Corollary 6.4. The Ito-Sadahiro $(-\phi)$ -representation introduced in [5] is not extremal for any $x \in \left[-\frac{1}{\phi}, \frac{1}{\phi^2}\right)$.

For the plots of the greedy, lazy and Ito-Sadahiro representations, see Figure 2.

7 Unique $(-\beta)$ -representations

In [1], it is shown that for $1 < \beta < 2$, the set of numbers with a unique $(-\beta)$ -representation is of Lebesgue measure zero. The authors also show that for $\beta < \phi$, such numbers are only two. Let us show that although the measure is always zero, the set of numbers with unique $(-\beta)$ -representation can be uncountable.

Proposition 7.1. Let μ be the Tribonacci constant, i.e. the real root $\mu \approx 1.839$ of $x^3 - x^2 - x - 1$. Denote $A = -\mu$, $B = -\mu + 1$, C = 0, D = 1 the alphabet \mathcal{B} for this particular case. Then all strings over the letters $\{B, C\}$ are admissible as both greedy and lazy $(-\mu)$ -representations.

We can prove an analogous statement for all sufficiently large bases.

Theorem 7.2. Let $\beta > 1 + \sqrt{3} \approx 2.732$, $\beta \notin \mathbb{N}$. Then there exist uncountably many numbers in $J_{-\beta,\mathcal{A}}$ having a unique $(-\beta)$ -representation over the alphabet $\mathcal{A} = \{0, 1, \dots, \lfloor \beta \rfloor\}$.

8 Conclusions

Our main tool in this paper was to view the $(-\beta)$ -representations in the alphabet $\mathcal{A} = \{0, 1, \ldots, \lfloor\beta\rfloor\}$ as strings of pairs of digits in \mathcal{A} , which amounts, in fact, to considering the alphabet $\mathcal{B} = -\beta \cdot \mathcal{A} + \mathcal{A}$ and the base β^2 . Such an approach puts forward the utility of studying number systems with positive base and a non-integer alphabet, as was already started by Pedicini [7] or Kalle and Steiner [6]. Obtaining new results for such systems – for example analogous to those of de Vries and Komornik [3] or Schmidt [9] would probably contribute also to the knowledge about negative base systems.

References

- [1] Karma Dajani and Charlene Kalle. Transformations generating negative β -expansions. Preprint, arXiv:1008.4289, 2010.
- [2] Karma Dajani and Cor Kraaikamp. From greedy to lazy expansions and their driving dynamics. *Expo. Math.*, 20(4):315–327, 2002.
- [3] Martijn de Vries and Vilmos Komornik. Unique expansions of real numbers. Adv. Math., 221(2):390–427, 2009.
- [4] Paul Erdös, István Joó and Vilmos Komornik. Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems. *Bull. Soc. Math. France*, 118(3):377–390, 1990.
- [5] Shunji Ito and Taizo Sadahiro. Beta-expansions with negative bases. *Integers*, 9:A22, 239–259, 2009.
- [6] Charlene Kalle and Wolfgang Steiner. Beta-expansions, natural extensions and multiple tilings associated with pisot units. *Trans. Amer. Math. Soc.*, 364:2281–2318, 2012.
- [7] Marco Pedicini. Greedy expansions and sets with deleted digits. Theoret. Comput. Sci., 332(1-3):313-336, 2005.
- [8] Alfréd Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar, 8:477–493, 1957.
- [9] Klaus Schmidt. On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc., 12(4):269–278, 1980.
- [10] William Thurston. Groups, tilings, and Finite state automata. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.