On the negative base greedy and lazy representations

Tomás Hejda ${ }^{\dagger, *,}$ Zuzana Masáková ${ }^{\dagger}$ Edita Pelantová ${ }^{\dagger}$
June 2012

Abstract

We consider positional numeration systems with negative real base $-\beta$, where $\beta>1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$-representation with respect to the alternate order. We also show that both extremal representations can be obtained using the positive base β^{2} and a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$-representation. Such a characterization allows us to study the set of uniquely representable numbers. In case that β is the golden ratio, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$-representation using a set of forbidden strings.

1 Introduction

For any real base α with $|\alpha|>1$ and a finite alphabet of digits $\mathcal{A} \subset \mathbb{R}$, we consider a positional numeration system. If $x=\sum_{i \leqslant k} x_{i} \alpha^{i}$ with digits $x_{i} \in \mathcal{A}$, we say that x has an α-representation in \mathcal{A}. The assumption that every $x \in \mathbb{R}$ has a representation implies the condition on the cardinality of the alphabet $\# \mathcal{A} \geqslant|\alpha|$.

Rényi [8] showed that if $\alpha>1$ and $\mathcal{A}=\{0, \ldots\lceil\alpha\rceil-1\}$, then every positive $x \geqslant 0$ has a representation. However, some numbers can have multiple representations. For example, in the decimal system one has

$$
\frac{1}{2}=0.5000000 \ldots=0.4999999 \ldots, \quad \text { whereas } \quad \frac{1}{3}=0.333333 \ldots
$$

If the base α is not an integer and the alphabet \mathcal{A} is rich enough to represent all positive reals, then almost all $x \geqslant 0$ have infinitely many representations and one can choose among them "the nicest" one from some point of view. ${ }^{1}$

We consider the natural ordering of the alphabet and, for positive bases, the lexicographical ordering of the representations. Amongst all representations of a given $x \in \mathbb{R}$, we can choose the smallest and largest ones with respect to the lexicographical ordering; they are called the greedy and lazy representations. The study of the greedy representations started by Rényi. The study of the lazy representations was initialized by Erdős, Joó and Komornik [4] and they were extensively studied by Dajani and Kraaikamp [2].

The focus on the negative bases started by the work of Ito and Sadahiro in 2009 [5]. Representations in the negative base do not need the extra bit for the signum \pm. A family of transformations producing negative base representations of numbers for $1<\beta<2$ is studied in [1]. Among other, it is shown that although none of them gives the maximal representation

[^0]in the alternate order, it is produced by a random algorithm, see Theorem 4.2. in [1]. In its proof, one can find out that the greedy representation is obtained by periodic application of two transformations.

In this contribution, we focus on negative bases $-\beta, \beta>1$ in general, and we deduce analogous result without introducing random $(-\beta)$-expansions. Our main result states that both extremal representations can be obtained using the positive base β^{2} and a non-integer alphabet \mathcal{B} by application of a transformation of the form $T(x)=\beta^{2} x-D(x)$, where $D(x) \in \mathcal{B}$ (Theorem 4.1 and Proposition 4.2). Note that representations using a non-integer alphabet were considered by Pedicini [7]. This enables us to exploit results of [6] for giving necessary and sufficient conditions for identifying sequences admissible as greedy and lazy ($-\beta$)-expansions (Theorem 5.2). We give examples of the golden mean $\phi \approx 1.618$ and the tribonacci constant $\mu \approx 1.839$. In the last section, we discuss the uniqueness of the representations of numbers.

2 How to obtain α-representations of real numbers

In this chapter we recall a method for finding an α-representation of a given number with general real base $\alpha,|\alpha|>1$. It is clear that if we are able to find a representation for all numbers x from some bounded interval $J \subset \mathbb{R}$ containing 0 , then we are also able to find an α-representation for any $x \in \bigcup_{k \in \mathbb{Z}} \alpha^{k} J$, i.e. for any real number (if 0 is inside J or the base α is negative) or for all positive reals or all negative reals (if 0 is a boundary point of J and the base α is positive). Our definition below is a restriction of the very general numeration system considered by Thurston [10], which permits for the base also complex numbers.
Definition 2.1. Given a base $\alpha \in \mathbb{R},|\alpha|>1$, a finite alphabet $\mathcal{A} \subset \mathbb{R}$ and a bounded interval $J \ni 0$. Let $D: J \mapsto \mathcal{A}$ be a mapping such that the transformation defined by $T(x)=\alpha x-D(x)$ maps $J \mapsto J$. The corresponding α-representation of x is a mapping $d=d_{\alpha, J, D}: J \mapsto \mathcal{A}^{\mathbb{N}}$,

$$
d_{\alpha, J, D}(x)=x_{1} x_{2} x_{3} x_{4} \cdots, \quad \text { where } x_{k}=D\left(T^{k-1}(x)\right)
$$

Both Rényi and Ito-Sadahiro systems [8,5] are "order-preserving", provided that we choose a suitable order on the set of representations.
Definition 2.2. Let $\mathcal{A} \subset \mathbb{R}$ be a finite alphabet ordered by the natural order " $<$ "in \mathbb{R}. Let $x_{1} x_{2} x_{3} \cdots$ and $y_{1} y_{2} y_{3} \cdots$ be two different strings from $\mathcal{A}^{\mathbb{N}}$. Denote $k=\min \left\{i \mid x_{i} \neq y_{i}\right\}$. We write

- $x_{1} x_{2} x_{3} \cdots \prec_{\text {lex }} y_{1} y_{2} y_{3} \cdots$ if $x_{k}<y_{k}$ and say that $x_{1} x_{2} x_{3} \cdots$ is smaller than $y_{1} y_{2} y_{3} \cdots$ in the lexicographical order;
- $x_{1} x_{2} x_{3} \cdots \prec_{\text {alt }} y_{1} y_{2} y_{3} \cdots$ if $(-1)^{k} x_{k}<(-1)^{k} y_{k}$ and say that $x_{1} x_{2} x_{3} \cdots$ is smaller than $y_{1} y_{2} y_{3} \cdots$ in the alternate order.
Proposition 2.3. Let α, \mathcal{A}, J and D be as in Definition 2.1. Let numbers $x, y \in J$ and let $d_{\alpha, J, D}(x)=x_{1} x_{2} x_{3} \cdots$ and $d_{\alpha, J, D}(y)=y_{1} y_{2} y_{3} \cdots$ be their α-representations.
- If $\alpha>1$ and $D(x)$ is non-decreasing then

$$
x<y \quad \Longleftrightarrow \quad x_{1} x_{2} x_{3} \cdots \prec_{\operatorname{lex}} y_{1} y_{2} y_{3} \cdots
$$

- If $\alpha<-1$ and $D(x)$ is non-increasing then

$$
x<y \quad \Longleftrightarrow \quad x_{1} x_{2} x_{3} \cdots \prec_{\text {alt }} y_{1} y_{2} y_{3} \cdots
$$

For a given base α and an alphabet $\mathcal{A} \subset \mathbb{R}$ we put

$$
J_{\alpha, \mathcal{A}}=\left\{\sum_{i=1}^{\infty} a_{i} \alpha^{-i} \mid a_{i} \in \mathcal{A}\right\}
$$

the set of numbers representable with negative powers of α and the alphabet \mathcal{A}, and for any $x \in J_{\alpha, \mathcal{A}}$, we denote the set of its α-representations in \mathcal{A} by

$$
R_{\alpha, \mathcal{A}}(x)=\left\{x_{1} x_{2} x_{3} \cdots \mid x=\sum_{i=1}^{\infty} x_{i} \alpha^{-i} \text { and } x_{i} \in \mathcal{A}\right\} .
$$

The Proposition 2.3 suggests how to choose a suitable ordering on the set $R_{\alpha, \mathcal{A}}(x)$.

Definition 2.4. Let α be a real base with $|\alpha|>1$ and let $\mathcal{A} \subset \mathbb{R}$ be a finite alphabet.

- Let $\alpha<-1$ and $x \in J_{\alpha, \mathcal{A}}$. Then the maximal and minimal elements of $R_{\alpha, \mathcal{A}}(x)$ with respect to the alternate order are called the greedy and lazy α-representations of x in the alphabet \mathcal{A}, respectively.
- Let $\alpha>1$ and $x \in J_{\alpha, \mathcal{A}}$. Then the maximal and minimal elements of $R_{\alpha, \mathcal{A}}(x)$ with respect to the lexicographical order are called the greedy and lazy α-representations of x in the alphabet \mathcal{A}, respectively.

3 Extremal representations in negative base systems

Let us now fix a base $\alpha=-\beta$ for some non-integer $\beta>1, \beta \notin \mathbb{N}$, and an alphabet $\mathcal{A}=$ $\{0,1, \ldots,\lfloor\beta\rfloor\}$. Using the same arguments as in [7] it can be shown that the set I of numbers representable in this system is an interval, namely

$$
\begin{equation*}
I=\left[\frac{-\beta\lfloor\beta\rfloor}{\beta^{2}-1}, \frac{\lfloor\beta\rfloor}{\beta^{2}-1}\right]=:[l, r] . \tag{1}
\end{equation*}
$$

The interval I (i.e. its boundary points) depend on the base β, however, we avoid it in the notation for simplicity. We denote by I_{a} the set of numbers which have a $(-\beta)$-representation starting with the digit $a \in \mathcal{A}$. Then $I_{a}=\frac{a}{-\beta}+\frac{1}{-\beta} I=\left[\frac{a}{-\beta}+\frac{r}{-\beta}, \frac{a}{-\beta}+\frac{l}{-\beta}\right]$ and I can be written as a (not necessarily disjoint) union of intervals $I=\bigcup_{a \in \mathcal{A}} I_{a}$. Obviously, we have $-\beta x-a \in I$ for every $x \in I_{a}$. Note that intervals I_{a} overlap, but not three at a time.

We define

$$
D_{m}(x)= \begin{cases}\lfloor\beta\rfloor & \text { for } x \in I_{\lfloor\beta\rfloor}, \\ a & \text { for } x \in I_{a} \backslash I_{a+1}, a \in \mathcal{A}, a \neq\lfloor\beta\rfloor .\end{cases}
$$

and

$$
D_{v}(x)= \begin{cases}0 & \text { for } x \in I_{0}, \\ a & \text { for } x \in I_{a} \backslash I_{a-1}, a \in \mathcal{A}, a \neq 0 .\end{cases}
$$

and corresponding transformations

$$
T_{m}(x)=-\beta x-D_{m}(x) \quad \text { and } \quad T_{v}(x)=-\beta x-D_{v}(x)
$$

Proposition 3.1. Let $x \in I$.

- Denote $\varepsilon_{0}=x$ and for all $i \geqslant 0$ put

$$
z_{2 i+1}=D_{m}\left(\varepsilon_{2 i}\right), \varepsilon_{2 i+1}=T_{m}\left(\varepsilon_{2 i}\right) \quad \text { and } \quad z_{2 i+2}=D_{v}\left(\varepsilon_{2 i+1}\right), \varepsilon_{2 i+2}=T_{v}\left(\varepsilon_{2 i+1}\right)
$$

Then $z_{1} z_{2} z_{3} \cdots$ is the greedy $(-\beta)$-representation of x.

- Denote $\eta_{0}=x$ and for all $i \geqslant 0$ put

$$
y_{2 i+1}=D_{v}\left(\eta_{2 i}\right), \quad \eta_{2 i+1}=T_{v}\left(\eta_{2 i}\right) \quad \text { and } \quad y_{2 i+2}=D_{m}\left(\eta_{2 i+1}\right), \eta_{2 i+2}=T_{m}\left(\eta_{2 i+1}\right)
$$

Then $y_{1} y_{2} y_{3} \cdots$ is the lazy $(-\beta)$-representation of x.
For $\beta \in(1,2)$, the description of greedy $(-\beta)$-representations of Proposition 3.1 can be deduced from the proof of Theorem 4.2 in [1], albeit the statement of the theorem is vague, namely that the greedy $(-\beta)$-representation can be generated by a "random sequence of transformations".

4 Representations in base β^{2} with non-integer alphabets

The algorithm for obtaining extremal $(-\beta)$-representations of a number x, described in Proposition 3.1, does not fit in the scheme of the Definition 2.1 for negative base $\alpha=-\beta$. In particular, there is no transformation $T(x)=-\beta x-D(x)$ which generates for every x the greedy (or lazy) $(-\beta)$-representation. This fact complicates the description of digit strings occurring as greedy or lazy representations. Nevertheless, we arrive to overcome this handicap.

Figure 1: The greedy and lazy transformations T_{G} and T_{L}. This figure corresponds to a base $-\beta \in(-3,-2)$. Here, $\delta_{b a}=\frac{b}{-\beta}+\frac{a}{(-\beta)^{2}}+\frac{r}{(-\beta)^{2}}$.

Defining $T_{G}:=T_{m} T_{v}$ and $T_{L}:=T_{v} T_{m}$ we obtain transformations $I \rightarrow I$ which produce the greedy and lazy $(-\beta)$-representations. The price to be paid is that the digit assigning functions D_{G} and D_{L} are not integer-valued. Precisely, $D_{G}, D_{L}: I \rightarrow \mathcal{B}=\{-b \beta+a \mid a, b \in \mathcal{A}\}$. This alphabet \mathcal{B} has $(\# \mathcal{A})^{2}$ distinct elements, since we consider only $\beta \notin \mathbb{N}$.

Let us describe the mappings T_{G} and D_{G} (resp. T_{L} and D_{L}) explicitly. Put

$$
\begin{align*}
\gamma_{b a} & =\frac{b}{-\beta}+\frac{a}{(-\beta)^{2}}+\frac{l}{(-\beta)^{2}} \text { for any } a, b \in \mathcal{A} \\
\text { and } \quad D_{G}(x) & =\max \left\{-b \beta+a \mid a, b \in \mathcal{A} \text { and } \gamma_{b a} \leqslant x\right\} . \tag{2}
\end{align*}
$$

Notice that the set in the definition of D_{G} is non-empty since $\gamma_{[\beta] 0}=l \leqslant x$ for all $x \in I$.
Defining a morphism $\psi: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ by

$$
\psi(-b \beta+a)=b a,
$$

we can state the following theorem.
Theorem 4.1. Let $\beta>1, \beta \notin \mathbb{N}, \mathcal{A}=\{0,1, \ldots,\lfloor\beta\rfloor\}$. Define on the interval I from (1) the transformation $T_{G}: I \rightarrow I$ by the prescription

$$
T_{G}(x)=\beta^{2} x-D_{G}(x),
$$

where $D_{G}: I \rightarrow \mathcal{B}$ is given by (2). For an $x \in I$ denote by $d_{G}(x)$ the corresponding β^{2} representation of x. Then

- $d_{G}(x)$ is the greedy β^{2}-representation of x in the alphabet \mathcal{B}.
- $\psi\left(d_{G}(x)\right)$ is the greedy $(-\beta)$-representation of x in the alphabet \mathcal{A}.

Using the following generalization of result in [4], we can obtain the lazy ($-\beta$)-representations of numbers from the greedy ones, and in the following text, we will mainly concentrate on the properties of the greedy transformation T_{G}.

Proposition 4.2. Let $z_{1} z_{2} z_{3} z_{4} \cdots$ be the greedy $(-\beta)$-representation of a number $z \in I$ and let $y_{1} y_{2} y_{3} y_{4} \cdots$ be the lazy $(-\beta)$-representation of a number $y \in I$. Then

$$
y_{i}+z_{i}=\lfloor\beta\rfloor \quad \text { for every } i \geqslant 1 \quad \Longleftrightarrow \quad y+z=-\frac{\lfloor\beta\rfloor}{\beta+1} .
$$

For an example of transformations T_{G}, T_{L}, see Figure 1.

5 Admissibility

The transformation T_{G} has the following property.

Lemma 5.1. For every $x \in[l, l+1)$ one has $T_{G}(x) \in[l, l+1)$. Moreover, for every $x \in I \backslash[l, l+1)$, $x \neq r$, there exists an exponent $k \in \mathbb{N}$ such that $T_{G}^{k}(x) \in[l, l+1)$.

The above fact implies that, in general, some digits from the alphabet \mathcal{B} do not appear infinitely many times in the greedy β^{2}-representation of any number $x \in I$. Let $\mathcal{A}_{G} \subseteq \mathcal{B}$ comprise those digits that can appear infinitely many times, i.e. $\mathcal{A}_{G}=\left\{D_{G}(x) \mid x \in[l, l+1)\right\}$, analogously we put $\mathcal{A}_{L}=\left\{D_{L} \mid x \in(r-1, r]\right\}$.

In order to formulate the result about admissible greedy representations which is derived using a result of [6], we introduce the left-continuous mappings $D_{G}^{*}: I \rightarrow \mathcal{B}, T_{G}^{*}: I \rightarrow I$ and $d_{G}^{*}: I \rightarrow \mathcal{A}^{\mathbb{N}}$ as

$$
D_{G}^{*}(x)=\lim _{\varepsilon \rightarrow 0+} D_{G}(x-\varepsilon), \quad T_{G}^{*}(x)=\lim _{\varepsilon \rightarrow 0+} T_{G}(x-\varepsilon), \quad d_{G}^{*}(x)=\lim _{\varepsilon \rightarrow 0+} d_{G}(x-\varepsilon)
$$

Theorem 5.2. Let $X_{1} X_{2} X_{3} \cdots \in \mathcal{A}_{G}^{\mathbb{N}}$. Then there exists an $x \in[l, l+1)$ such that $d_{G}(x)=$ $X_{1} X_{2} X_{3} \cdots$ if and only if for every $k \geqslant 1$

$$
X_{k+1} X_{k+2} X_{k+3} \cdots \prec \begin{cases}d_{G}^{*}\left(T_{G}^{*}(l+1)\right) & \text { if } X_{k}=\max \mathcal{A}_{G}, \\ d_{G}^{*}(l+\{\beta\}) & \text { if } X_{k}=-b \beta+\lfloor\beta\rfloor, X_{k} \neq \max \mathcal{A}_{G} .\end{cases}
$$

Remark 5.3. Using Proposition 4.2 one can derive an analogous necessary and sufficient condition for admissible lazy β^{2}-representations $X_{1} X_{2} X_{3} \cdots$ of numbers in $x \in(r-1, r]$ over the alphabet $\mathcal{A}_{L}=\lfloor\beta\rfloor-\mathcal{A}_{G}$.

6 Negative golden ratio

Let us illustrate the previous results and their implications on the example of the negative base $-\beta$ where $\beta=\phi=\frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio. Real numbers representable in base $-\phi$ over the alphabet $\mathcal{A}=\{0,1\}$ form the interval $J_{-\phi, \mathcal{A}}=I=\left[-1, \frac{1}{\phi}\right]=[l, r]$.

The greedy and lazy $(-\phi)$-representation can be obtained from the greedy and lazy ϕ^{2} representation over the alphabet $\mathcal{B}=\{-\phi,-\phi+1,0,1\}$, applying the morphism $\psi: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ given by

$$
\psi(-\phi)=10, \quad \psi(-\phi+1)=11, \quad \psi(0)=00, \quad \psi(1)=01
$$

The greedy and lazy ϕ^{2}-representations are generated by the transformation

$$
T_{G}(x)=\phi^{2} x-D_{G}(x), \quad T_{L}(x)=\phi^{2} x-D_{L}(x), \quad x \in\left[-1, \frac{1}{\phi}\right]
$$

where the digit assigning maps D_{G} and D_{L} are

$$
D_{G}(x)= \begin{cases}-\phi & \text { for } x \in\left[-1,-\frac{1}{\phi}\right), \\
-\phi+1 & \text { for } x \in\left[-\frac{1}{\phi},-\frac{1}{\phi^{2}}\right), \quad D_{L}(x)=\left\{\begin{array}{ll}
-\phi & \text { for } x \in\left[-1,-\frac{1}{\phi^{2}}\right] \\
-\phi+1 & \text { for } x \in\left(-\frac{1}{\phi^{2}}, 0\right] \\
0 & \text { for } x \in\left[-\frac{1}{\phi^{2}}, 0\right), \\
1 & \text { for } x \in\left[0, \frac{1}{\phi}\right],
\end{array} \quad \text { for } x \in\left(0, \frac{1}{\phi^{3}}\right]\right. \\
1 & \text { for } x \in\left(\frac{1}{\phi^{3}}, \frac{1}{\phi}\right]\end{cases}
$$

The graph of the transformations T_{G}, T_{L} restricted to the intervals $[l, l+1)=[-1,0),(r-1, r]=$ $\left(\frac{1}{\phi^{2}},-\frac{1}{\phi}\right]$ are drawn in Figure 2.

Let us now apply Theorem 5.2 to the case $\beta=\phi$. Denote for simplicity the digits of the alphabet $\mathcal{B}=\{-\phi,-\phi+1,0,1\}$ by

$$
A=-\phi \quad<\quad B=-\phi+1<C=0<D=1
$$

With this notation, we have $\mathcal{A}_{G}=\{A, B, C\}$ and $\mathcal{A}_{L}=\{B, C, D\}$.
Proposition 6.1. A string $X_{1} X_{2} X_{3} \cdots$ over the alphabet $\mathcal{A}_{G}=\{A, B, C\}$ is the greedy ϕ^{2} representation of a number $x \in[-1,0)$ if and only if it does not contain a factor from the set $\left\{B C, B^{\omega}, C^{\omega}\right\}$.
A string $X_{1} X_{2} X_{3} \cdots$ over the alphabet $\mathcal{A}_{L}=\{B, C, D\}$ is the lazy ϕ^{2}-representation of a number $x \in\left(-\frac{1}{\phi^{2}}, \frac{1}{\phi}\right]$ if and only if it does not contain a factor from the set $\left\{C B, B^{\omega}, C^{\omega}\right\}$.

Figure 2: Transformations T_{G} (left), T_{L} (middle) and $T_{I S}^{2}$ (right) in the base ϕ^{2} that correspond to the greedy, lazy and Ito-Sadahiro representations in the base $-\phi$.

Corollary 6.2. The points $x=-1$ and $x=\frac{1}{\phi}$ are the only points in $\left[-1, \frac{1}{\phi}\right]$ which have a unique $(-\phi)$-representation over the alphabet $\{0,1\}$.

Proposition 6.1 provides a combinatorial criterion for admissibility of representations in base ϕ^{2} in the non-integer alphabet \mathcal{A}_{G}. One can also rewrite the admissibility of a digit string in base $-\phi$ using forbidden strings in the original alphabet $\{0,1\}$.
Proposition 6.3. A digit string $x_{1} x_{2} x_{3} \cdots$ over the alphabet $\{0,1\}$ is a greedy $(-\phi)$-representation of some $x \in[-1,0)$ if and only if
(i) it does not start with the prefix $1^{2 k} 0$, nor $0^{2 k-1} 1, k \geqslant 1$;
(ii) it does not end with the suffix 0^{ω} nor 1^{ω};
(iii) it does not contain the factor $10^{2 k} 1$, nor $01^{2 k} 0, k \geqslant 1$.

Corollary 6.4. The Ito-Sadahiro ($-\phi$)-representation introduced in [5] is not extremal for any $x \in\left[-\frac{1}{\phi}, \frac{1}{\phi^{2}}\right)$.

For the plots of the greedy, lazy and Ito-Sadahiro representations, see Figure 2.

7 Unique ($-\beta$)-representations

In [1], it is shown that for $1<\beta<2$, the set of numbers with a unique $(-\beta)$-representation is of Lebesgue measure zero. The authors also show that for $\beta<\phi$, such numbers are only two. Let us show that although the measure is always zero, the set of numbers with unique $(-\beta)$-representation can be uncountable.
Proposition 7.1. Let μ be the Tribonacci constant, i.e. the real root $\mu \approx 1.839$ of $x^{3}-x^{2}-x-1$. Denote $A=-\mu, B=-\mu+1, C=0, D=1$ the alphabet \mathcal{B} for this particular case. Then all strings over the letters $\{B, C\}$ are admissible as both greedy and lazy $(-\mu)$-representations.

We can prove an analogous statement for all sufficiently large bases.
Theorem 7.2. Let $\beta>1+\sqrt{3} \approx 2.732, \beta \notin \mathbb{N}$. Then there exist uncountably many numbers in $J_{-\beta, \mathcal{A}}$ having a unique $(-\beta)$-representation over the alphabet $\mathcal{A}=\{0,1, \ldots,\lfloor\beta\rfloor\}$.

8 Conclusions

Our main tool in this paper was to view the $(-\beta)$-representations in the alphabet $\mathcal{A}=$ $\{0,1, \ldots,\lfloor\beta\rfloor\}$ as strings of pairs of digits in \mathcal{A}, which amounts, in fact, to considering the alphabet $\mathcal{B}=-\beta \cdot \mathcal{A}+\mathcal{A}$ and the base β^{2}. Such an approach puts forward the utility of studying number systems with positive base and a non-integer alphabet, as was already started by Pedicini [7] or Kalle and Steiner [6]. Obtaining new results for such systems - for example analogous to those of de Vries and Komornik [3] or Schmidt [9] would probably contribute also to the knowledge about negative base systems.

References

[1] Karma Dajani and Charlene Kalle. Transformations generating negative β-expansions. Preprint, arXiv:1008.4289, 2010.
[2] Karma Dajani and Cor Kraaikamp. From greedy to lazy expansions and their driving dynamics. Expo. Math., 20(4):315-327, 2002.
[3] Martijn de Vries and Vilmos Komornik. Unique expansions of real numbers. Adv. Math., 221(2):390-427, 2009.
[4] Paul Erdös, István Joó and Vilmos Komornik. Characterization of the unique expansions $1=\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems. Bull. Soc. Math. France, 118(3):377-390, 1990.
[5] Shunji Ito and Taizo Sadahiro. Beta-expansions with negative bases. Integers, 9:A22, 239-259, 2009.
[6] Charlene Kalle and Wolfgang Steiner. Beta-expansions, natural extensions and multiple tilings associated with pisot units. Trans. Amer. Math. Soc., 364:2281-2318, 2012.
[7] Marco Pedicini. Greedy expansions and sets with deleted digits. Theoret. Comput. Sci., 332(1-3):313-336, 2005.
[8] Alfréd Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar, 8:477-493, 1957.
[9] Klaus Schmidt. On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc., 12(4):269-278, 1980.
[10] William Thurston. Groups, tilings, and Finite state automata. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.

[^0]: *Corresponding author, tohecz@gmail.com
 ${ }^{\dagger}$ Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University in Prague, supported by Grant Agency of the Czech Republic GA $\check{C} R$ 201/09/0584, Ministry of Education, Youth and Sports of the Czech Republic MSM6840770039, Grant Agency of the Czech Technical University in Prague SGS11/162/OHK4/3T/14
 ${ }^{1}$ Note that although most people prefer writing $\frac{1}{2}=0.5$, the shopkeepers consider the representation $0.4999 \ldots$ nicer than $0.5000 \ldots$ for $x=\frac{1}{2}$.

