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Geometrical aspects of positional representations of real and complex numbers.
Abstract. We study three geometrical aspects of positional numeration systems.

First, we study Rauzy fractals associated to the symmetric β-expansions. We recall
that the symmetric β-expansion of x ∈ [−1

2
, 1
2
) is the coding of its orbits by x 7→ βx −

bβx + 1
2
c with the code x 7→ bβx + 1

2
c. For arbitrary Pisot unit β, the collection of

the Rauzy fractals always forms a multiple tiling of the contracting hyperplane. We
concentrate on the case β ∈ (1, 2). We give a necessary condition on the coefficients of
the minimal polynomial of β, under which the collection forms a single tiling. When
this necessary condition holds, we reduce the tiling problem to a tiling problem for the
Rauzy fractals of another type of β-expansions.

In the second part, we consider the greedy β-expansions for arbitrary quadratic
Pisot number β. We recall that the greedy β-expansion of x ∈ [0, 1) is the coding of
its orbit by the map x 7→ βx − bβxc with the code x 7→ bβxc. We are interested in the
study of rational numbers that have a purely periodic expansion. For many values of β,
there exists c > 0 such that all rational numbers in [0, c) whose denominator is relatively
prime to ββ ′ have a purely periodic expansion. We give an algorithm that determinines
whether such c > 0 exists, and when it exists, this algorithm computes the maximum
value of c with arbitrary precision. For cases when β+ β ′ is an integer multiple of ββ ′,
we give a necessary and sufficient condition on max c = 1.

The third part is devoted to the study of complex spectra. For a complex number
γ ∈ C \ R with |γ| > 1 and a finite alphabet A containing 0, we define the spectrum
A[γ] as the set of all polynomials with coefficients in A evaluated at the point γ. We
prove that when the alphabet is too small, namely when #A < |γ|2, the spectrum is not
relatively dense in C. For a class of cubic complex Pisot units, we give an algorithm that
determines the shortest distance between points of the spectra for all alphabets of the
formA = {0, 1, . . . ,m} at once.

Aspects géométriques des représentations positionelles des nombres réels et com-
plexes.
Résumé. Nous étudions trois aspects des systèmes de numération positionnels.

Nous commmençons par l’étude des fractals de Rauzy de β-développements sym-
métriques, c’est-à-dire, les codage de l’orbite de x ∈ [−1

2
, 1
2
) par x 7→ β− bβx+ 1

2
c avec

le code x 7→ bβx + 1
2
c. Pour chaque unité de Pisot β, les fractals de Rauzy forment un

pavage multiple de l’hyperplan contractant. Nous considérons le cas β ∈ (1, 2). Nous
donnons une condition nécessaire pour que le pavage multiple soit un pavage. Sous
cette condition, nous réduisons la question de pavage à une question de pavage pour
des β-développements d’un autre type.

La deuxième partie concerne les nombres rationnels dont le développement de Rényi
est purement périodique. Le développement de Rényi de x ∈ [0, 1) est le codage de son
orbite par la fonction x 7→ βx− bβxc avec le code x 7→ bβxc. Pour beaucoup de nombres
de Pisot quadratiques il existe c > 0 tel que le développement de Rényi de x est purement
periodique pour tout p/q ∈ [0, c) avec p, q ∈ Z et q premier avec ββ ′. Nous présentons
un algorithme qui décide si un tel c existe ; dans ce cas, il calcule la valeur maximale
de c. Quand β+ β ′ est un multiple de ββ ′, nous trouvons une condition nécessaire et
suffisante pour que max c = 1.

La troisième partie est consacrée à l’etude des spectres de nombres complexes. Pour
un nombre complexe γ ∈ C \R tel que |γ| > 1 et pour un alphabet fini contenant 0, nous
définissons le spectreA[γ] comme l’ensemble de tous les polynômes dont les coefficients
se trouvent dansA, évalué en γ. Nous montrons que si l’alphabet est trop petit, c’est-



à-dire, #A < |γ|2, alors le spectre n’est pas relativement dense dans C. Pour une classe
des unités cubiques complexes de Pisot, nous présentons un algorithm qui calcule la
distance minimale entre les point des spectres pour tous les alphabetsA = {0, 1, · · · ,m}.

Geometrické pohledy na poziční reprezentace reálných a komplexních čísel.
Abstrakt. Zabýváme se třemi geometrickými hledisky pozičních numeračních soustav.

V první části studujeme racionální čísla, která mají čistě periodické hladovéβ-rozvoje,
pro kvadratické Pisotova čísla β. Hladovým β-rozvojem čísla x ∈ [0, 1) rozumíme
kódování jeho orbity při transformaci x 7→ βx− bβxc pomocí kódu x 7→ bβxc. Pro mnoho
takových β existuje c > 0 takové, že všechna racionální čísla v intervalu [0, 1), jejichž
jmenovatel je nesoudělný s ββ ′, mají čistě periodický rozvoj. Navrhujeme algoritmus,
který zjistí, zda takové c existuje, a pokud ano, určí maximální možnou hodnotu c s
libovolnou přesností. V případě, kdy ββ ′ celočíselně dělí β+ β ′, představujeme nutnou
a postačující podmínku, aby max c = 1.

V druhé části se zabýváme studiem Rauzyho fraktálů pro symetrické β-rozvoje, tedy
pro kódování orbit zobrazení x 7→ βx − bβx + 1

2
c. Pro libovolnou Pisotovu jednotku

tvoří Rauzyho fraktály multidláždění příslušného prostoru. Pro β ∈ (1, 2) ukazujeme
nutnou podmínku na koeficienty minimálního polynomu β, aby toto multidláždění
mohlo být dlážděním. Je-li tato nutná podmínka splněna, převádíme tuto otázku na
problém spojený s Rauzyho fraktály pro jinou β-transformaci.

Třetí část je zaměřena na spektra komplexních čísel. Spektrum, pro γ ∈ C \R, |γ| > 1
a pro konečnou abeceduA obsahující 0, je množina hodnot všech polynomů s koeficienty
vA vyčíslených v bodě γ. Ukazujeme, že pro malé abecedy, #A < |γ|2, spektrum není
relativně husté v C. Pro třídu kubických komplexních jednotek navrhujeme algoritmus,
který najde nejmenší vzdálenost mezi prvky spektra s abecedouA = {0, 1, . . . ,m}, a to
pro všechnam najednou.
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CHAPTER ONE

Introduction

Chapter contents
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Positional representations of numbers provide a very genuine way of ex-
pressing numbers as words — sequences of symbols, where only finitely many
well-distinguishable different symbols appear. This genuinity has been recog-
nized by many important mathematicians, such as Pierre-Simon Laplace, who
said (according to [Eve88]):

“It is India that gave us the ingenious method of expressing all numbers by means
of ten symbols, each symbol receiving a value of position as well as an absolute
value; a profound and important idea which appears so simple to us now that we
ignore its true merit. But its very simplicity and the great ease which it has lent
to computations put our arithmetic in the first rank of useful inventions; and we
shall appreciate the grandeur of the achievement the more when we remember
that it escaped the genius of Archimedes and Apollonius, two of the greatest men
produced by antiquity.”

In the spirit of this quotation, we will consider positional representation in the
form

x =
∑

xjbj, written as x = xkxk−1 · · · x1x0•x−1x−2x−3 · · · , (-)

where xj are from a finite alphabet of digits, and (bj) is a sequence of numbers
that is increasing in modulus.

The most classic example known to today’s world is the decimal system,
where bj := 10j and xj ∈ A9 := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We can take any β ∈ N at
least 2 and xj ∈ Aβ−1 := {0,1, . . . ,β−1}. For instance in the computer arithmetic,
it is standard to work in the binary system β = 2.

If x ∈ N, it can be written uniquely as x = xkxk−1 · · · x1x0• in the above
system (uniquely up to leading zeros), and there are two well-known algorithms
that compute the representation; the first one starts by computing x0, the other
one by computing xk:



2

Greedy algorithm.

Input: a number x ∈ N and a base
β ∈ N, β > 2.

Output: xk · · · x1x0•, the represen-
tation of x.

1. Find the largest k such that βk < x,
set j := k.

2. Compute xj := bx/βjc.

3. Set x := x− xjβj and j := j− 1.

4. Repeat steps 2–3 as long as j > 0.

Division algorithm.

Input: a number x ∈ N and a base
β ∈ N, β > 2.

Output: xk · · · x1x0•, the represen-
tation of x.

1. Set j := 0.

2. Find xj ∈ {0, 1, . . . , β− 1} such that
xj ≡ x (mod β).

3. Set x := (x− xj)/β and j := j+ 1.

4. Repeat steps 2–3 until x = 0.

The greedy algorithm can be run on any real x > 0 to obtain a represen-
tation. A. Rényi [Rén57] then observed that it works for arbitrary real β > 1.
The output of this algorithm for x > 0 is called the greedy β-expansion of x.
K. Schmidt [Sch80] showed that all numbers from the field Q(β) have an even-
tually periodic β-expansion if β is a Pisot number, i.e., if β > 1 is an algebraic
integer and all its other Galois conjugates are in modulus < 1. C. Frougny and
B. Solomyak [FS92] then discussed what numbers have a finite β-expansion.
Certainly if x > 0 has a finite β-expansion and β is an algebraic number then
x ∈ Z[β,β−1]. They say that β has Property (F) if every x ∈ Z[β−1] ∩ [0,∞) has a
finite β-expansion. They also show that if the minimal polynomial of β > 1 is
Pβ(X) = X

d −ad−1X
d−1 − · · ·−a1X−a0 with ad−1 > · · · > a1 > a0 > 1, then

β is a Pisot number and has Property (F). M. Hollander [Hol96] then showed
that also if aj > 0 and ad−1 > a0 + · · · + ad−2 then β is a Pisot number with
Property (F). S. Akiyama [Aki00] found all cubic Pisot units that satisfy Prop-
erty (F). However, the problem of describing all numbers with Property (F) is
considered difficult.

The division algorithm was generalized to non-integer bases by I. Kátai,
B. Kovács and J. Szabó [KK80, KK81, KS75]. We say that a pair (β,A), where β
is an algebraic integer andA ⊂ Z is a finite alphabet containing 0, is a number
system (NS) if every x ∈ Z[β] has a unique representation x = xkxk−1 · · · x1x0•
with xj ∈ A. We say that β satisfies the CNS property if (β, {0, 1, . . . , b− 1}) is a
number system for some b ∈ N; this number system is then called a canonical
number system (CNS). If β ∈ C admits A such that (β,A) is a NS, then β is
an expanding algebraic integer, i.e., all its Galois conjugates including β itself
are in modulus > 1. If β has the CNS property, then neither β nor its Galois
conjugates are positive real numbers. However, it is considered difficult to
describe all β with the CNS property. Two classes of such β are known: First,
when Pβ(X) = pdXd+pd−1X

d−1+ · · ·+p1X+p0 with 1 6 pd 6 · · · 6 p1 6 p0,
and second, when p0 > pd + · · ·+ p1 and all pj > 0 [AR04, ST04]. We note that
the notion of a CNS was extended to polynomials in Z[X] by A. Pethő [Pet91],
and the original definition fits in the one by Pethő if irreducible polynomials are
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(Fig. 1-1) Plots of the greedy, Ito-Sadahiro and symmetric β-transformations
for |β| = ϕt = 1.839 · · · the Tribonacci constant.

considered only. In this context, various combinatorial and arithmetic sufficient
conditions for the CNS property were given, as well as algorithms to check the
property [AP02, BK08].

The similarity of the known results about the CNS property and Property (F)
led to the realization that the two underlying systems can be unified, and the
notion of shift radix systems (SRS) has been introduced by S. Akiyama et al.
[ABBPT05]. Consider a vector r = (r0, . . . , rd−1) ∈ Rd. Then the map

τr : Z
d → Zd, z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1, br · zc),

where r · z is the dot-product r0z0 + · · ·+ rd−1zd−1, is called a d-dimensional SRS.
We say that τr is finite if the zero vector (0, . . . , 0) is in the orbit of each z ∈ Zd.

Hollander used the following correspondence to prove his result on Prop-
erty (F): An algebraic integer β with minimal polynomial Pβ(X) = Xd+1 −

adX
d − · · ·− a1X− a0 has Property (F) if and only if τr is finite, where

r = (r0, . . . , rd−1) ∈ Rd and rj = ajβ
−1 + aj−1β

−2 + · · ·+ a0β−j−1.

Then, Akiyama et al. proved that βwith minimal polynomial Pβ(X) = pdXd +

· · ·+ p1X+ p0 is a CNS number if and only if τr is finite, where

r =
1

p0
(pd, pd−1, . . . , p1).

We refer to a survey about SRS by P. Kirschenhofer and J. Thuswaldner for more
details [KT14].

Note that when x ∈ [0, 1), the greedy β-expansion of x can be generated as a
coding by the codeD : [0, 1)→ {0, 1, . . . , dβe− 1} of the orbit of x by the transfor-
mation T : [0, 1) → [0, 1), x 7→ βx −D(x). If the code is chosen differently, and
the transformation modified accordingly, we get various types of β-expansions,
such as the lazy expansions which provide the lexicographically smallest expan-
sion [EJK90, DK02, HMP13], the minimal weight expansions which minimize
the digit sum [FS08], the optimal expansions which minimize the distance of the
convergents to the expanded point in each step [DdVKL12], or the symmetric
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expansions whose transformation satisfies that T(−x) = −T(x) for almost all x in
its domain [AS07]. Transformations with a negative β < −1 can be considered
as well [IS09]. Three examples of plots of β-transformations are depicted in Fig-
ure 1-1. We note that it is also possible to define transformations with complex
bases that act on the complex numbers [Pet94, HFI09, AC15].

Property (F) can be studied also for other types of expansions than the greedy
ones. We know that when a transformation has Property (F), β is either a Pisot
or a Salem number, i.e., all its other Galois conjugates are 6 1 in modulus. When
β is a Pisot number, i.e., the conjugates are < 1 in modulus, Property (F) implies
that the Rauzy fractals for the transformation tile the corresponding contracting
hyperplane [Aki99, Pra99]. It was shown that weakening Property (F) slightly,
we get a condition that is equivalent to the tiling condition [Aki02]. However,
there exist examples when the tiles do not form a tiling of the contracting hy-
perplane [KS12]; we study this phenomenon for the symmetric expansions in
Chapter 3.

The greedy β-expansions admit an interesting arithmetical property. We
know that when β ∈ N and p/q ∈ [0, 1) is a rational number such that q
is co-prime to β, then p/q has a purely periodic greedy β-expansion. Sur-
prisingly, for certain quadratic β, namely roots of polynomials β2 = aβ + 1

with a > 1, we get that all rational numbers in [0, 1) have a purely periodic
greedy β-expansion [Sch80]. All Pisot units that satisfy Property (F) behave
similarly [Aki99]. The non-unit case is more complicated. However, this arith-
metical property is closely related to the shape of the Rauzy fractals [BS07],
which allows us to study this property for general quadratic Pisot numbers, see
Chapter 4.

Integer numeration systems provide another generalization of the greedy
algorithm. Such a system consists of a strictly increasing sequence of integers
(bj)j>0, rather than of powers of β. If b0 = 1, we can represent every natural
number in a greedy way, with integer digits 0 6 xj < bj+1/bj. Putting bj := βj

for β ∈ N, β > 2, we recover the standard representations.
Letting (bj)j>0 be the Fibonacci sequence given by b1 = 1, b2 = 2, and

bj = bj−1 + bj−2 for j > 2, we get the so-called Zeckendorf numeration [Zec72],
in which, each number x ∈ N has a representation with digits in {0, 1} such that
two consecutive digits are never both 1’s.

Various sequences (bj)j>0 can be considered. A standard approach is to
consider recurrence relations whose characteristic polynomial is the minimal
polynomial of a Pisot number β; also, sequences related to continued fraction
expansions were considered [Ost22].

A different approach was used by P. Lecomte and M. Rigo in the so-called
abstract numeration systems [LR01]. They consider any infinite language over
a finite ordered alphabet. Such language is totally ordered by the radix order
(where shorter words are smaller than longer words and words of the same
length are ordered lexicographically); The expansion of n ∈ N is then the nth



Chapter 1 Introduction 5

1

0

0

1 1

0

0

(Fig. 1-2) The acceptance automaton (graph) of the language of the Zeckendorf
representations (left). Its variant that allows leading zeros (right).

smallest word in the language w.r.t. the radix order. Every integer numeration
system such that bj+1/bj is bounded is an abstract numeration system; to see
this, it is enough to see that the radix order on the representations preserves
the order on the numbers. (But also, for instance the counting system is an
abstract numeration system; here n is represented by n consecutive 1’s.) The
Zeckendorf system is recovered by considering all finite words with digits 0 and
1 that start with 1 and do not contain 11 as a factor; these words are labellings
of paths in the graph in Figure 1-2 left that start in an in-edge and end in an
out-edge. Figure 1-2 right then shows the graph for the language of the factors of
these representations. Note that this is the same language as the language of the
greedy β-expansions with β = ϕg the golden ratio; the reason is that its minimal
polynomial X2 − X− 1 is the characteristic polynomial of the recurrence relation
for the Fibonacci numbers. This relation has been further studied [GT91, FS92].

Another point of view on the positional numeration systems is the follow-
ing: fix a base β > 1 and a finite alphabet A, and study the properties of all
representations in this system.

The consideration of only non-negative powers of β leads to the so-called
spectra of numbers [EJK90]. A spectrum of βwith alphabetA is the setA[β] of
all polynomials with coefficients inA, evaluated at 0. When β is a Pisot number
and A ⊆ Z, the set of all possible distances between the points of spectra, i.e.,
A[β] −A[β], is not dense in R [Gar62]. It is also not dense if the alphabet is too
small, namely if #A < β [EK98]. IfA = Am := {0,1, . . . ,m} for somem, andβ >
1, the spectrum can be written as an increasing sequence of numbers, 0 = x0 <
x1 < x2 < · · · . Then, the minimal distance between the points of the spectrum,
`m(β) := lim infk→∞(xk+1 − xk), is further studied; we have that `m(β) = 0

if and only if m > β − 1 and β is not a Pisot number [Bug96, Fen15]. On the
other hand, the spectrum Am[β] is Delone if and only if β is a Pisot number
andm > β− 1. In that case, the distances between consecutive points take only
finitely many values. Also, this sequence is substitutive; roughly speaking, it can
be generated by a system of rewriting rules over a finite alphabet [FW02]. For a
particular case, `m(β) can be computed [BH02]. The value of `m(β) is known
for allm for some particular β and classes of β [KLP00, Kom02, BH03].

Spectra are studied in the complex plane as well. The first example was given
for the base γ = i − 1 and alphabet A1 = {0, 1} [Pen65, Knu81], in this case,
A1[i − 1] = Z[i], the set of Gaussian integers. Note that with the base γ = i + 1,
we do not get all of Z[i], see Figure 1-3. Some results similar to the real case were
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(Fig. 1-3) Parts of spectraA1[i − 1]
(top left), A1[i + 1] (top right) and
A1[γt] (bottom left), where A1 =

{0, 1} and γt is the complex Tri-
bonacci constant.

obtained, namely that `m(γ) = infx,y∈Am[γ], x 6=y|x− y| > 0 for allm ∈ N if and
only if γ is a complex Pisot number. We recall that a non-real number is a complex
Pisot number if all its Galois conjugates but itself and its complex conjugate are
< 1 in modulus [Zaï04]. We extend this result in Chapter 5 by showing that
ifm < |γ|2 − 1 then the spectrum is not relatively dense. We also provide and
algorithm for computing `m(γ) for allm at once, for a class of cubic numbers γ.

The consideration of both positive and negative powers of β leads to the
so-called β-representations. A β-representation of x ∈ R with alphabet A
containing 0 is any string x−k · · · x−1x0•x1x2x3 · · · with xj ∈ A such that x =∑

j>−k xjβ
−j. If the alphabet is too small, namely if #A < β, the set of points

that have a β-representation is not an interval; for instance in the case β = 3

andA = {0, 2}, it is the Cantor set. A precise condition on when representable
x form an interval is known due to M. Pedicini [Ped05]. Besides the question
of existence of a representation, we can ask how many representations exist.
Restricting to representations of the form •x1x2x3 · · · , N. Sidorov showed that
almost every x has a continuum of expansions if and only if β > ϕg, the golden
ratio [Sid03a]. He also studied the cardinality of the set of x that have less than
a continuum of expansions and its Hausdorff dimension [Sid03b].

A lot of interest is in the study of algorithms that perform arithmetic opera-
tions such as addition. In standard addition, for instance in the decimal system,
a particular digit of the result depends on all digits before it; compare, e.g.,
9999998 + 2 = 10000000 with 9999998 + 1 = 9999999. It is possible to perform
addition in the decimal system in such a way that a digit of the output depends
only on a bounded part of the input; the price is that the alphabet has to enlarged
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(Fig. 1-4) The twin dragon [Knu81] (left) and the original Rauzy fractal [Rau82]
(right). Either of them can tile the complex plane periodically. The Rauzy fractal
can also tile the plane aperiodically if we take itself and its scaled copies.

to allow redundancy [Avi61, CR78, FPS13]. In general, parallel addition is pos-
sible only if the base β is an algebraic number, none of whose Galois conjugates
lies on the unit circle. We note that Möbius number systems provide a way
of unifying the positional numeration systems with other numeration systems
based on linear fractional transformations, such as the continued fraction algo-
rithms [Kůr09] and that arithmetic algorithms have been also studied in the
context of Möbius number systems [Kůr12].

Figure 1-4 shows two examples of fractals associated to positional numera-
tion systems. The one on the left was presented by D. Knuth in relation to the
complex numeration in base i − 1 [Knu81]. The one on the right was presented
by G. Rauzy in relation to the Tribonacci substitution. M. Barge proved that
for any greedy β-transformation with a Pisot unit β, the Thurston’s tiling can
be constructed [Thu89, Bar15]. Under certain conditions, general β-expansions
give rise to tilings or multiple tilings as well [KS12]; we study the multiple tilings
for the symmetric β-expansion in Chapter 3. Tilings can be also constructed for
canonical number systems with monic polynomials [KK92] and tilings for shift
radix systems have been defined as well that unify the two approaches [BSSST11].
Also, tilings are considered for substitutions and it is conjectured that every irre-
ducible unimodular Pisot substitution gives a tiling by the Rauzy’s construction;
this open problem is known as the Pisot conjecture [ABBLS15].

Structure of the thesis

The thesis is structured in the following way. Chapter 2 recalls used notions
from number theory, the theory of languages and shifts, β-expansions, model
sets, and tilings. Chapters 3–5 form the core part of the thesis; in Chapter 3,
results on multiple tilings for the symmetric β-transformation are presented,
in Chapter 4 we discuss purely periodic Rényi expansions in quadratic bases,
finally Chapter 5 comprises results on spectra of complex numbers. Each of the
three main chapters is closed by its own conclusion, mentioning open problems
related to its topic.
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2-1 Number theory

The crucial notions for all results in this thesis are the notions of Pisot and complex
Pisot number.

Definition 2-1. We say that an algebraic integer β ∈ R, β > 1 is a Pisot number if
all its Galois conjugates but β itself are < 1 in modulus.

We say that an algebraic integer β ∈ C \ R, |β| > 1 is a complex Pisot number
if all its Galois conjugates but β itself and its complex conjugate β† are < 1 in
modulus.

To fix the notation, we recall that if β ∈ C is an algebraic number whose
minimal polynomial Pβ has degree d, then all the roots of this polynomial are
called the Galois conjugates of β. One of them is β(0) := β itself and one of them is
its complex conjugate β† in case β /∈ R. Then, there is a certain number dR of real
conjugates and dC pairs of complex conjugates; we have that dR + 2dC = d− 1 if
β ∈ R and dR + 2dC = d− 2 if β ∈ C \ R. We label the real ones β(1), . . . , β(dR)

and the complex ones β(dR+1), β
†
(dR+1), . . . , β(dR+dC), β

†
(dR+dC)

.
To each β(j), a Galois isomorphismψ(j) : Q(β)→ Q(β(j)) is assigned that maps

β 7→ β(j). In particular, ψ(0) : Q(β)→ Q(β) is the identity isomorphism.

§ 2-1-1 Places of algebraic fields. Let K be an algebraic number field, and de-
note OK its ring of integers. We consider all metrics on K, and we say that two
metrics are equivalent, if they induce the same topology on K. A place of K is
an equivalence class of metrics on K. Before the work of K. Hensel at the end of
19th century it was believed that the only places of K are the ones represented
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by the standard absolute value x 7→ |ψ(j)(x)| for one of the Galois isomorphisms
of K; these places are usually called infinite.

But Hensel [Hen97] showed that for each prime ideal p ⊂ OK, there exists
an ultrametric on K associated to it, and these ultrametrics are mutually non-
equivalent. Therefore there exists a place for each of the ideals, these places are
usually called finite. The representative ultrametric for p is usually defined for
x ∈ K by |x|p = N(p)−νp(x), where N(p) > 2 is the norm of the ideal p ⊆ OK, and
νp(x) is the power of p in the decomposition of the principal ideal xOK into prime
ideals. For the precise definition of N(p) we refer to J. Neukirch’s book [Neu99,
Ch. III, § 1]; we will only be interested in the topological properties of K w.r.t. |·|p,
the value of N(p) does not influence the topology.

Example 2-2. In the field Q, the prime ideals are p = pZ for each rational prime
p > 0. The associated ultrametric is then |x|p = p−νp(x), where νp(x) is the
power of p in the prime factorization of x ∈ Q.

Example 2-3. In the field Q(
√
5), we have OQ(√5) = Z[ϕg], where ϕg = 1+

√
5

2

is the golden ratio. The ring of integers OQ(√5) is a principal ideal domain,
therefore the prime ideals are p = pZ[ϕg] for each prime number p ∈ Z[ϕg] up
to multiplication by units. In this field, for instance the number p = 1+ 3ϕg is a
Pisot number and a prime; for the ideal p = pZ[ϕg], we have that |x|p = 5−νp(x),
where νp(x) is the power of p in the factorization of x ∈ Q(

√
5). For example,

|10|p = 1/25 because of the prime factorization 10 = (5 − 3ϕg) · 2 · (1 + 3ϕg)
2

(note that the first factor is a unit).

§ 2-1-2 Representation spaces. For the purpose of this section, let β > 1 be a
Pisot number of degree d. Let K = Q(β), then K has 1+ dR + dC infinite places
p(0), . . . , p(dR+dC). In the first one, we consider the norm |x|p(0)

= |x|. In the next
(real) dR ones, we consider the norms |x|p(j)

= |ψ(j)(x)|. In the last (complex) dC

ones, we consider the norm |x|p(j)
= |ψ(j)(x)|

2.
In the view of Galois isomorphisms, we define a map

Ψ : Q(β)→
dR+dC∏
j=1

Q(β(j)), x 7→ (ψ(1)(z), . . . , ψ(dR+dC)(x)).

The domain ofΨ is equipped with a component-wise addition and multiplication.
We can embed the domain in RdR ×CdC , which is, from the metric point of view,
the same as RdR+2dC = Rd−1. The convergence in K simultaneously w.r.t. the
places p(1), . . . , p(dR+dC) is then the same as the convergence of the images by Ψ
w.r.t. the usual topology on Rd−1. We also define

Ψ0 : Q(β)→ Rd, x 7→ (x, Ψ(x)).

If β is not a unit, then we consider finite places of K as well, namely all prime
ideals p ⊆ OK for which βOK ⊆ p, which we denote p | (β). We recall that an



Chapter 2 Preliminaries 11

ideal i is a non-empty subset of OK such that iOK ⊆ OK. An ideal is a prime ideal
if and only if its only sub-ideals are i itself and {0}.

We put Kf =
∏

p|(β) Kp, where Kp is the completion of Kw.r.t. the norm |·|p.
For x ∈ Q(β), we denote xf the diagonal embedding of x in Kf. Last but not least,
we define

Ψf : Q(β)→ Rd−1 × Kf, x 7→ (Ψ(x), xf),
Ψ0,f : Q(β)→ Rd × Kf, x 7→ (x, Ψ(x), xf).

When β is a unit, we have, of course, no p for which p | (β), because p  
OK = βOK. We can then put Ψf := Ψ and Ψ0,f := Ψ0, or we can view it as if Kf
was a single point.

Example 2-4. Consider β ≈ 4.967, root of X3 − 4X2 − 4X − 4. This polynomial
has two other roots β ′ ≈ −0.484 + 0.756i and (β ′)†. We have that K := Q(β) =

{a + bβ + cβ2 : a, b, c ∈ Q }. The ideal βOK is factored into βOK = i2i3, where
i2 = 2OK + (β− 2)OK and i3 = 3OK + (β− 3)OK are prime ideals.

2-2 Languages and shifts

In general, we consider languages over finite alphabets. For a finite set A —
often called alphabet — A∗ denotes the set of all words over this alphabet, i.e.,
finite sequences of elements of the alphabet, including the empty word ε. The
length of u ∈ A∗ is denoted |u|. A language overA is then any subset ofA∗. The
setA∗ is naturally equipped with the operation of concatenation of words, and
it forms a monoid called the free monoid over A, with ε playing the role of the
neutral element.

A factor of a finite word u = u0u1 · · ·un−1 ∈ A∗ is any finite word w ∈ A∗

such that w = ukuk+1 · · ·ul−1 for some 0 6 k 6 l 6 n. If k = 0, we say that w
is a prefix, if l = n, we say that w is a suffix of u. We use the notation Prefk u to
denote the prefix of u of length k.

A language is regular if it is recognized by a finite automaton; two examples
of automata are in Figure 1-2 on page 5; the right one recognizes language of
words over {0, 1} that do not contain 11 as a factor; the left one adds the condition
that the word does not start with 0.

To formalize the notion of automaton, we say that a finite automaton over an
alphabetA is a finite directed graph where parallel edges are allowed and where
each edge is labelled by a letter from the alphabet. Nodes of the graph are called
states; some states are marked as initial and some are marked as final (states can
be marked both ways). A language recognized by the automaton is the set of the
concatenations of the edge labellings on all path that start in an initial state and
end in a final state. Where an automaton is drawn, the initial states are marked
by an in-edge coming from nowhere, the final states by an out-edge to nowhere.

A special type of a finite automaton is a finite letter-to-letter transducer from
A to B. This is a finite automaton over the alphabetA × B. It recognizes pairs
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of words, i.e., a relation betweenA∗ and B∗. Usually, all states in transducers
are final and the out-edges to nowhere are not shown. For convenience, the
first component (inA) is called the input and the second one (in B) is called the
output.

Besides finite words, there are infinite words as well. We denoteAω the set
of infinite words u = u0u1u2 · · · with each uj ∈ A. For an infinite word, we
define factors and prefixes accordingly.

The setAω — when the alphabet is finite and has at least two elements — is
often called a Cantor set or a full shift. A cylinder inAω is any subset ofAω of
the form wAω with w ∈ A∗; the cylinders {wAω :w ∈ A∗ } form a base of the
Cantor topology. The setAω is equipped with the Haar measure µA , which is a
probability measure defined by µA(wAω) = (#A)−|w| for each w ∈ A∗.

The shift map acts on Aω by u0u1u2 · · · 7→ u1u2 · · · . A subshift Σ ⊆ Aω is
a subset ofAω which is closed (w.r.t. the Cantor topology) and shift-invariant.
Each subshift is fully determined by a set of forbidden factors F ⊆ A∗. This means
that for each subshift Σ ⊆ Aω there exists F ⊆ A∗ such that Σ = Aω \A∗FAω.
We say that Σ is a sofic subshift if there exists a regular language F that is a set of
forbidden factors of Σ; we say that it is a subshift of finite type (SFT) if there exists
a finite F. Since every finite F ⊆ A∗ is regular, every SFT is sofic. However, the
converse is not true; for instance F = 10(00)∗1 ⊆ {0, 1}∗ is regular and defines
a sofic subshift which contains all words in {0, 1}ω in which there is an even
number of 0’s between consecutive 1’s; this subshift is not an SFT.

As the complement of a regular language is again regular, we know that the
language of a sofic shift, i.e., the set L(Σ) = {w : w is a factor of some u ∈ Σ }

is a regular language. Moreover, L(Σ) is closed on taking factors and is right-
extensible, i.e., for all w ∈ L(Σ) we have that wa ∈ L(Σ) for some a ∈ A. Such
a language is recognizable by a finite automaton where all states are final. The
shift Σ is then the set of the labellings of infinite paths in this automaton that
start in an initial state.

Note that finite letter-to-letter transducers, which recognize relations between
A

∗ andB∗, also recognize relations betweenAω andBω by considering infinite
paths that start in an initial state and that visit final states infinitely many times.

2-3 Beta-expansions

Let β ∈ R be > 1 in modulus. Suppose I ⊂ R is bounded, A ⊂ R is a
finite alphabet containing 0, and D : I 7→ A is a digit function, that is, any
function satisfying that βx − D(x) ∈ I for all x ∈ I. Then the function
T : I → I, x 7→ βx−D(x) is a β-transformation. The β-expansion (or T -expansion)
of x ∈ I is then x = •x1x2x3 · · · ∈ Aω, where xj = D(T j−1x). If for x ∈
R \ I there exists k ∈ N such that β−kx ∈ I, then we define the β-expansion
of x as x = x−k+1 · · · x0•x1x2 · · · , where β−kx has the expansion β−kx =

•x−k+1x−k+2x−k+3 · · · , i.e., xj = D(T j+k−1(β−kx)); we assume k minimal to



Chapter 2 Preliminaries 13

ensure that the expansion is defined properly. Note that we index the positions
in the β-expansions the other way than in (-) in the introduction.

We define three particular β-transformations:
The greedy β-transformation TG : [0, 1) → [0, 1) was introduced by A. Rényi

[Rén57], and is defined as follows:

TGx := βx− bβxc; we have D(x) = bβxc ∈ A = {0, 1, . . . , dβe− 1}.

The symmetric β-transformation TG : [−1
2 ,

1
2) → [−1

2 ,
1
2), was introduced by

S. Akiyama and K. Scheicher [AS07], and is defined as follows:

TSx := βx− bβx+ 1
2c; we have D(x) = bβx+ 1

2c ∈ A = {b1−β
2 c, . . . , d

β−1
2 e}.

For β ∈ (1, 2), we define the balanced β-transformation TB : [ 2−β
2β−2)→ [ β

2β−2)

as follows:

TBx := βx− bβx− 1−β
2 c; we have D(x) = bβx− 1−β

2 c ∈ A = {0, 1}.

§ 2-3-1 Beta-transformation as a dynamical system. A measure-preserving dy-
namical system (T,I, µ,B) consists of a domain I, a map T : I → I, a σ-algebra
over I and a finite measure µ on I such that T is µ-preserving, i.e., µ(T−1(B)) =

µ(B) for all B ∈ B, and µ(I) < +∞. We usually do not provide B explicitly and
we assume that B is the σ-algebra of Borel sets on I.

We fix an arbitrary Pisot number β of degree at least 2 and we consider
the greedy and symmetric β-transformations, and in case β ∈ (1, 2), also the
balanced one. All these transformations have a unique invariant measure that is
absolutely continuous w.r.t. the Lebesgue measure (so-called ACIM). This follows
from [LY78, Theorem 1]; they show that if the limits from the left are equal at
all discontinuity points and also the limits from the right are equal, then there
is a unique ACIM, whose support is a finite union of intervals. This is trivially
satisfied by the balanced transformation that has only 1 discontinuity point, and
it is satisfied by the greedy and symmetric expansions because the limits from
the left and from the right are the right and left end points of the domain of
the transformation, respectively. In the sequel, we consider T to be one of the
three transformations TG, TS or TB, and we denote µ the unique ACIM. Since our
transformations are right-continuous, we consider the support of µ to consist of
intervals of the form [l, r).

§ 2-3-2 Rauzy fractals. To each x ∈ Z[β−1]∩I, we assign a Rauzy fractal, which
is the Hausdorff limit

R(x) := H-lim
k→∞ Ψ(βkT−k(x)).

We have to justify that the limit exists. To this end, denote Cn := βnT−n(x), so
that R(x) = H-limΨ(Cn). Then

Cn+1 = βn+1T−1(β−nCn) ⊆ βn(β−nCn +A) = Cn + βn
A,
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because T−1S ⊆ S+A
β for any S ⊆ I. Also, because T is surjective, T−1(y)

contains at least one point x ∈ I such that y = βx− a for some a ∈ A, whence
y ∈ βT−1(y) −A and S ⊆ βT−1(S) −A. Therefore

Cn = βnT−n(x) ⊆ βn(βT−(n+1)(x) −A) = Cn+1 − βn
A.

The two relations together imply that we have, for the Hausdorff distance,
δ(Ψ(Cn+1), Ψ(Cn)) 6 δ(Ψ(βn

A), Ψ(0)). Since Ψ(βn) decays exponentially, the
sequence Ψ(Cn) is a Cauchy sequence.

§ 2-3-3 Natural extension. We now describe a model of the natural extension
of the β-transformation, as given for instance by S. Ito and H. Rao [IR05, IR06].
We put

Qf(x) := H-lim
n→∞ Ψf(x− β

nT−n(x)) ⊆ Rd−1 × Kf for x ∈ I.

This limit exists by the same argument as for R(x). An alternative definition of
Qf(x) is the following:

Qf(x) = {−
∑

j60 xjΨf(β
−j) : x−k+1x−k+2 . . . x−1x0x1x2 . . . is T -admissible

for all k > 0},

where •x1x2x3 · · · is the T -expansion of x; the sum in the above formula is con-
vergent, because Ψf(β

j)→ Ψf(0) as j→∞. Since the language of T -admissible
expansions is rational, we immediately get that Qf(x) takes only finitely many
shapes.

But not only that, we also have that the domain I is split into disjoint sub-
intervals I =

⋃
v∈V [v, v̂), where V ⊂ I is a finite index set, such that x 7→ Qf(x)

is constant on each [v, v̂). This has been first pointed out by W. Thurston [Thu89],
proof of the statement is given for instance by C. Kalle and W. Steiner [KS12,
Proposition 3.9] in the case β unit, and by M. Minervino and W. Steiner [MS14,
§ 2.2 and Theorem 2] in the general case. Following these two papers, we define
the natural extension (T ,X, λd × µf) of (T,I, µ) as follows:

X :=
⋃
v∈V

[v, v̂)× Qf(v) ⊆ Rd × Kf,

T : X → X, (x, y) 7→ (Tx, Ψ(β)y− Ψ(D(x))),

where we recall that D(x) = βx − Tx is the first digit of the expansion of x,
λd is the Lebesgue measure on Rd, and µf is the product measure of the Haar
measures on each Kp for p | (β). (Note that we can define µf in terms of the Haar
measure onAω with a suitable alphabetA, see § 4-4).

We also define

Q(x) := H-lim
n→∞ Ψ(x− βnT−n(x)) ⊆ Rd−1 for x ∈ I
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and we have that Q(x) = x − R(x) for all x ∈ Z[β−1] ∩ I. We recall that for β
unit, we have that Kf is a single point, and Qf(x) coincides with Q(x).

Denoting π0 the projection Rd × Kf → R, (x, y) 7→ x (for x ∈ R and y ∈
Rd−1 × Kf), we get that π0(T (x, y)) = T(π0(x, y)) for all (x, y) ∈ T , whence
dµ(x)/dx =

∫
y∈Qf(x)

d(λd−1 × µf). This means that if x does not lie in the
support of the invariant measure, then Qf(x) is a set of zero measure.

2-4 Model sets

Model sets appear naturally in the context of Rauzy fractals for β-transformation,
where β is a degree d Pisot number, since the set Ψ(Z[β] ∩ I) is a model set with
physical space Rd−1 and internal space R.
Definition 2-5. A model (cut-and-project) set is the set

ΛΦI,ΦP(Ω) := {ΦP(z) :ΦI(z) ∈ Ω, z ∈ Zd },

where:

d, dP, dI > 1 are integers such that d = dP + dI;

the linear map ΦP : R
d → RdP is onto and its restriction to Zd is injective;

the linear map ΦI : R
d → RdI is such that ΦI(Z

d) is dense in RdI ;

the linear map Rd → Rd, z 7→ (ΦP(z), ΦI(z)) has the full rank d;

the setΩ ⊂ RdI is bounded and the closure ofΩ is equal to the closure of its
interior.

The space RdP is called the physical space, the space RdI is called the internal space
and the setΩ is called the (acceptance) window. Since ΦP|Zd is injective, we can
define a map ? : ΦP(Z

d)→ RdI as x? := ΦI(Φ
−1
P (x)).

For the case when β is a degree d Pisot number, we put

ΦI : R
d → R, (z0, . . . , zd−1) 7→ z0 + z1β+ · · ·+ zd−1β

d−1,
ΦP : R

d → Rd−1, (z0, . . . , zd−1) 7→ z0Ψ(1) + z1Ψ(β) + · · ·+ zd−1Ψ(β
d−1).

If we restrict ΦP to Zd, we get that ΦP|Zd = Ψ ◦ΦI|Zd , whence x? = Ψ−1(x) for
all x ∈ ΦI(Z

d). We also have that ΦI(Z
d) = Z[β]. Therefore we get that

Λβ(Ω) := {Ψ(z) : z ∈ Z[β] ∩Ω } (-)

is a model set. The relation between the sets and the mappings can be seen in
the following commutative diagram:

Rd

Zd

R Z(β) Ψ(Z(β)) Rd−1

ΦI ΦP

ΦI ΦP

∪

Ψ⊃
?

⊂
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It is well known that model sets are special cases of Meyer sets, which them-
selves are Delone sets. We say that a set Λ ⊂ F := Rd is:

uniformly discrete if there exists r > 0 such that |x − y| > r for all distinct
x, y ∈ Λ;

relatively dense if there exists R > 0 such that for all x ∈ F, the ball BR/2(x) :=

{ z ∈ F : |z− x| 6 R/2 } meets Λ, i.e., contains a point x ∈ Λ.

a Delone set if it is both uniformly discrete and relatively dense.

a Meyer set if both Λ and Λ−Λ = { x− y : x, y ∈ Λ } are Delone.

The concept of Meyer sets was considered by Y. Meyer in 1972 [Mey72]. The
fundamental study of model and Meyer sets is in R. Moody’s paper from 1997
[Moo97]. Model sets have a large number of interesting properties.

Consider a model set Λ = ΛΦI,ΦP [l, r). Then we have the following:

1. Λ is repetitive; consider any ρ-patch Πρ(x) := Λ ∩ Bρ(x) for x ∈ Λ and ρ > 0,
then Πρ(x) − x = Πρ(y) − y for infinitely many y ∈ Λ. Moreover, for any
fixed x, ρ, the set of y such that Πρ(x) − x = Πρ(y) − y is again a model set,
just with a different acceptance window.

2. Λ has finite local complexity; for a fixed ρ > 0, the set of different ρ-patches
{Πρ(x) − x : x ∈ Λ } is finite.

In Item 1 above, we can say even more about the new acceptance window; this
statement will be useful later:

Lemma 2-6. Let Λ(Ω) = ΛΦI,ΦP(Ω) be a model set with Ω = [l, r). Consider any
x ∈ Λ(R) and ρ > 0, where ρ is large enough so that Πρ(x) 6= 0/. Then there exist
ε1 6 0 < ε2 such that

{y ∈ Λ(R) : Πρ(x) − x = Πρ(y) − y } = x+Λ[ε1, ε2). (-)

Proof. We put

ε1 := −min{ z? − l+ x? : z ∈ ΦP(Z
d) ∩ Bρ(0), z

? > l− x? }

∪ { z? − r+ x? : z ∈ ΦP(Z
d) ∩ Bρ(0), z

? > r− x? },

ε2 := −max{ z? − l+ x? : z ∈ ΦP(Z
d) ∩ Bρ(0), z

? < l− x? }

∪ { z? − r+ x? : z ∈ ΦP(Z
d) ∩ Bρ(0), z

? < r− x? }.

(-)

Obviously ε1 6 0 < ε2. Consider y ∈ Λ(R). Then Πρ(y) − y = Λ[l − y?, r −

y?) ∩ Bρ(0). First, suppose that y satisfies (-), then (-) guarantees that Λ[l−
y?, r− y?) ∩ Bρ(0) = Λ[l− x

?, r− x?) ∩ Bρ(0), as desired. Second, if y does not
satisfy (-), then Λ[l− y?, r− y?) ∩ Bρ(0) and Λ[l− x?, r− x?) ∩ Bρ(0) differ in
at least one point.
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2-5 Tilings and multiple tilings

We define tilings only for Euclidean spacesRn. In Chapter 4, we work with Rauzy
fractals in Rn × Kf, where Kf has the topology of the Cantor space; however, we
do not rely on the tiling properties of these Rauzy fractals.

Definition 2-7. Let T = {T (x)}x∈X be a countable collection of sets T (x) ⊂ Rn.
We say that T is a multiple tiling of Rn of covering degree m, for m > 1, if the
following conditions are satisfied:

1. The sets T (x) take only finitely many shapes: there are only finitely many
classes of T modulo the group of translations in Rn.

2. The family T is locally finite: for any compact C ⊂ Rn, the set of tiles that
meet C, i.e., { x ∈ X : T (x) ∩ C 6= 0/ }, is finite.

3. Every T (x) is compact and it is a closure of its interior.

4. Almost every y ∈ Rn is contained in exactlym tiles.

We say that T is a tiling if it is a multiple tiling of covering degree 1.

Tilings appear in several contexts. First, the Rauzy fractals as defined in
§ 2-3-2 form a multiple tiling for Pisot units β, whenever the β-transformation T
has some reasonable properties:

Theorem 2-8 [KS12, Theorem 4.10]. Let T : I → I be a β-transformation with a
Pisot unit β and let µ be its ergodic invariant measure (as in § 2-3-1). Suppose that
the alphabetA satisfiesA ⊂ Z[β], the support of µ is the whole I and the language of
T -admissible sequences is regular. Then the collection of Rauzy fractals {R(x)}x∈Z[β]

forms a multiple tiling of Rd−1.

It had been conjectured since the beginning of the idea of fractals associated to
numeration systems in 1980s [Rau82, Thu89] that for the Rényi expansions, the
Rauzy fractals form a tiling. This is known as the Pisot conjecture for β-numeration
and it has been proved recently by M. Barge [Bar16, Bar15].

Besides the tilings by the Rauzy fractals, we consider the Voronoi tilings as
well:

Definition 2-9. Suppose Λ ∈ Rn is a Delone set. The Voronoi tile of x ∈ Λ is the
set of points that are closer (or at equal distance) to x than to Λ \ {x}:

V(x) := { z ∈ Rn : |z− x| 6 |z− y| for all y ∈ Σ }.

The Voronoi tiling induced by Λ is then the collection {V(x)}x∈Λ.

An example of a multiple tiling by Rauzy fractals is given in Figure 3-3 on
page 25, and example of a Voronoi tiling is given in Figure 5-3 on page 54.
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3-1 Introduction

The idea of using a β-transformation and its related numeration system to
generate a tiling goes back to 1980s and the works of G. Rauzy [Rau82] and
W. Thurston [Thu89]. The result of Rauzy can be interpreted as that the greedy
β-transformation for β = ϕt the Tribonacci number induces a tiling of R2.
S. Akiyama [Aki99] showed that when β has Property (F) then the transfor-
mation induces a tiling with 0 as an interior point of R(0). Akiyama [Aki02,
Proposition 2] showed that the tiling property is equivalent to Property (W) (the
weak finiteness property), i.e., that for all x ∈ Z[β−1] ∩ I and all ε > 0 there exist
y, z whose expansion is finite, such that |y| < ε and x = y − z. There are more
properties which are equivalent to the tiling property [ABEI01, Sie04, IR06].
M. Barge [Bar16, Bar15] has recently proved that every greedy β-transformation
with a Pisot number β satisfies the tiling property.

On the other hand, C. Kalle and W. Steiner [KS12] gave examples of β such
that the symmetric β-transformation induces a multiple tiling of covering de-
gree 2. One example is for β = ϕt, the Tribonaccci constant; we generalize this
result to all d-Bonacci numbers, see Theorem 3-2. Another example is for β = ϕp,
the minimal Pisot number; we comment on this example in § 3-5.

3-2 Main results

In this chapter, two main results are proved. First the degree of the multiple
tiling for the symmetric β-expansions is discussed for all Pisot units β ∈ (1, 2);
this is then applied to the case of d-Bonacci numbers.

First, note that the support of the ACIM µS of the symmetricβ-transformation
TSx = βx − bβx + 1

2c is certainly a subset of IS := [−1
2 ,

β
2 − 1) ∪ [1 − β

2 ,
1
2); to

see this, we note that TSIS = IS and for any non-zero x ∈ [β2 − 1, 1 − β
2 ) we

have that TkSx ∈ IS for some k ∈ N. Therefore we have, for the Rauzy fractals
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(Fig. 3-1) Plots of the symmetric and balanced β-transformations for β the
Tribonacci constant.

for the symmetric β-transformation — denoted RS, that RS(x) = {Ψ(x)} for all
x ∈ [−1

2 ,
1
2) ∩ Z[β] such that x /∈ IS. We denote mS the degree of the multiple

tiling {RS(x)}x∈Z[β]∩IS .
Note that Theorem 2-8 guarantees that {RS(x)}x∈Z[β]∩supp µS

is a multiple
tiling, where supp µS ⊂ IS is the support of µS. However, for x ∈ Z[β] ∩ IS
such that x /∈ IS, we know that RS(x) has measure zero, therefore it does not
contribute to the multiple tiling. We allow this little imprecision to simplify the
arguments.

We also recall that the balanced β-transformation, for β ∈ (1, 2), is the map
TBx = βx− bβx+ 2−β

2β−2c defined on IB := [ 2−β
2β−2 ,

β
2β−2). We denote µB, RB(x)

andmB accordingly. We prove the following statement:

Theorem 3-1. Suppose β ∈ (1, 2) is a Pisot unit. Then the degrees of the multiple
tilings for the symmetric and balanced expansion satisfy that

mS =
∣∣N(β− 1)

∣∣mB, (-)

where N(β− 1) ∈ Z denotes the norm of the algebraic integer β− 1.
In particular, {RS(x)}x∈Z[β]∩IS forms a tiling if and only if {RB(x)}x∈Z[β]∩IB forms

a tiling and β− 1 is a unit.

Note that if Pβ is the minimal polynomial of β, then we have that |N(β− 1)| =

|Pβ(1)|. For the d-Bonacci numbers, we give the degreemS explicitly:

Theorem 3-2. Let d > 2 and let β be the d-Bonacci number, i.e., the Pisot root of
βd = βd−1 + βd−2 + · · · + β + 1. Then the degree of the multiple tiling for the
symmetric β-expansions is

mS = d− 1.

3-3 Relation between symmetric and balanced expansions

We establish a strong relation between the symmetric and the balanced expan-
sions, in the case when β ∈ (1, 2). We recall that two measure-preserving dynam-
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ical systems (I1, T1, µ1) and (I2, T2, µ2) are conjugate iff there exists a one-to-one
correspondence η : I1 → I2 such that T1 = η−1T2η and µ1(B) = µ2(ηB) for all
measurable B ⊆ I1; the map η is called conjugation. Note that a conjugation
in this sense is more than an isomorphism since for an isomorphism, we only
require that T1x = η−1T2ηx for µ1-almost every x ∈ I1.

It is easy to see that the transformations (TS,IS) and (TB,IB) are conjugate:

Observation 3-3. Denote

η : IS → IB, x 7→

{
1

β−1x if x ∈ [1− β
2 ,

1
2),

1
β−1(x+ 1) if x ∈ [−1

2 ,
β
2 − 1).

(-)

Then η is a conjugation (IS, TS)→ (IB, TB), i.e., TS = η−1TBη.

Proposition 3-4. Let y ∈ Z[β] ∩ IB. Then

Ψ(β− 1)RB(y) = RS(η
−1y).

Proof. We have that

RS(η
−1y) = H-lim

n→∞ Ψ(Cn), where Cn := βnT−n
S η−1y.

Defining ι : IB → {0, 1} by η−1x = (β− 1)x− ι(x), we get that

Cn = βnη−1T−n
B y = { (β− 1)βnz− βnι(z) : z ∈ T−n

B y }.

From this we see that for each point z ∈ Cn, Ψ(z) or Ψ(z) + Ψ(βn) is in Ψ((β−

1)βnT−n
B y), and vice versa: for each pointΨ(z) ∈ Ψ((β− 1)βnT−n

B y), z or z−βn

is in Cn. Since limn→∞ Ψ(βn) = Ψ(0), we get that

RS(η
−1y) = H-limΨ(Cn) = H-limΨ((β− 1)βnT−n

B y) = Ψ(β− 1)RB(y).

Since z 7→ Ψ(β − 1)z is a linear bijection Rd−1 → Rd−1, we directly obtain
the following result:

Corollary 3-5. The two collections of tiles

{RS(x) : x ∈ η−1(Z[β] ∩ IB) } and {RB(x) : x ∈ Z[β] ∩ IB } (-)

form a multiple tiling of the same covering degreemB.

Proof of Theorem 3-1. The proof is based on the fact that for any algebraic integer
α, the congruence mod α on Z[α] has exactly |N(α)| classes. Let H be a set of
representatives of the classes modulo β− 1 such that 0 ∈ H. We will show that
for each h ∈ H, the collection of tiles

{RS(x) : x ∈ Lh }
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is a multiple tiling of degreemB, where we denote, for convenience,

Lh := η−1
( h

β− 1
+ Z[β]

)
. (-)

With this notation, we know from Corollary 3-5 that {RS(x) : x ∈ L0 } is a multiple
tiling of covering degreemB.

We recall from § 2-3-1 that IS is a finite union of intervals IS =
⋃

v∈V [v, v̂)

such that for each x ∈ Z[β] ∩ [v, v̂) we have that RS(x) = Ψ(x) − QS(v). We also
recall that Ψ(Z[β] ∩ [v, v̂)) is a model set according to (-), we have

Ψ(Z[β] ∩ [v, v̂)) = Λβ[v, v̂).

Let Patρ(0) := {RS(y) :y ∈ IS, Ψ(y) ∈ Bρ(0) } be a patch of the multiple tiling
for TS centered at 0. We have

Patρ(0) =
⋃
v∈V

{RS(y) : Ψ(y) ∈ Πv,ρ(0) },

where
Πv,ρ(0) := {Ψ(y) : y ∈ Z[β] ∩ [v, v̂), Ψ(y) ∈ Bρ(0) }

(note that we distinguish patches of the underlying model set — i.e., collections
of points of model sets — denoted Πv,ρ(0); and patches of the multiple tilings
— i.e., collections of tiles — denoted Patρ(0)). We can apply Lemma 2-6 here to
each of the model sets Λ[v, v̂) and obtain εv,1 and εv,2 for each v ∈ V . We put
ε2 := minv∈V εv,2.

For each h ∈ H, choose wh ∈ −h + (β − 1)Z[β] such that Ψ(wh) ∈ Λ[0, ε2).
Then Πv,ρ(0) = Πv,ρ(Ψ(wh)) − Ψ(wh) and

Πv,ρ(0) ∩ Ψ(Lh) = Πv,ρ(Ψ(wh)) ∩ Ψ(L0) − Ψ(wh).

From this, we derive:

Patρ(0) =
⋃
h∈H

⋃
v∈V

{Ψ(x) − QS(v) : x ∈ Lh, Ψ(y) ∈ Πv,ρ(0) }

=
⋃
h∈H

⋃
v∈V

{Ψ(y) − QS(v) − Ψ(wh) : y ∈ L, Ψ(y) ∈ Πv,ρ(wh) }

=
⋃
h∈H

{R − Ψ(wh) : R ∈ Pat0,ρ(wh) },

where Pat0,ρ(w) = {RS(y) : y ∈ L0, Ψ(x) ∈ Πρ(w) } is a patch of the multiple
tiling {RS(x) : x ∈ L0 }. This means that Patρ(0) is a union of #H translations
of patches of {RS(x) : x ∈ L0 } Since #H = |N(β − 1)| and {RS(x) : x ∈ L0 } has
covering degreemB, this completes the proof.

Remark 3-6. We can easily write out what Lh is directly, we have that

Lh = ((h+ (β− 1)Z[β]) ∩ [1− β
2 ,

1
2)) ∪ ((h− 1+ (β− 1)Z[β]) ∩ [−1

2 ,
β
2 − 1)).

In case when mB = 1, we obtain that the collection {RS(x) : x ∈ Lh } forms a
tiling of Rd−1 for each h ∈ {0, 1, . . . , |N(β− 1)|− 1}.
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3-4 The d-Bonacci case. Proof of Theorem 3-2

For a d-Bonacci number, whose minimal polynomial is Pβ(X) = Xd −
∑d−1

j=0 X
j,

we have that
|N(β− 1)| = |Pβ(1)| = (d− 1). (-)

Therefore, in order to prove Theorem 3-2, we only need to show that TB induces
a tiling:

Proposition 3-7. Let β be a d-Bonacci number for d > 2. Then the collection of tiles
{RB(x) : x ∈ Z[β] ∩ IB } is a tiling.

We use the following statement, where we denote PB the set of y ∈ IB ∩ Z[β]
that have a purely periodic balanced expansion:

Lemma 3-8 [KS12, Proposition 4.15]. Suppose z ∈ Z[β] ∩ [0,∞). Let k ∈ N be an
integer such that for all y ∈ PB, the expansions of y and y + β−kz have a common
prefix at least as long as the period of y.

Then Φ(z) lies in a tile RB(x) for x ∈ Z[β] ∩ IB if and only if

x = TkB(y+ β−kz) for some y ∈ PB.

Lemma 3-9. A sequence •x1x2x3 · · · is a balanced d-Bonacci expansion of some x ∈
IB if and only if it does not contain 0d+1 nor 1d+1 as a factor, and for all j ∈ N,
xj+1xj+2 · · · 6= (1d0)ω.

Proof. Denote l := 2−β
2β−2 andb(x) ∈ {0,1}ω the balanced expansion of x ∈ [l, l+1).

We have that
b(l) = (0d1)ω, lim

ε↘0
b(l+ 1

2 − ε) = (01d)ω,

b(l+ 1
2) = (10d)ω, lim

ε↘0
b(l+ 1− ε) = (1d0)ω.

According to [KS12, Theorem 2.5], a string x1x2x3 · · · is the balanced expansion
of some x ∈ [l, l+ 1) if and only if for all j ∈ Nwe have

(0d1)ω
(Aj)
� xj+1xj+2 · · ·

(Bj)
≺ (01d)ω if xj+1 = 0,

(10d)ω
(Cj)
� xj+1xj+2 · · ·

(Dj)
≺ (1d0)ω if xj+1 = 0,

where ≺ and � denotes the lexicographic ordering onAω withA = {0, 1}: We
have that u1u2 · · · ≺ v1v2 · · · if there exists k such that uk 6= vk and uk < vk for
the smallest such k. We have that u � v if u ≺ v or u = v.

If xj+1 = 0, then xj+2 = 0⇒ (Bj) and xj+2 = 1⇒ ((Bj)⇔ (Dj+1)). Similarly,
if xj+1 = 1, then xj+2 = 1 ⇒ (Cj) and xj+2 = 0 ⇒ ((Cj) ⇔ (Aj+1)). From this
we get that only (Aj) and (Dj) have to be verified. We have that

(Aj) ⇐⇒ xj+1xj+2 · · · /∈ (0d1)∗0d+1
A

ω,
(Dj) ⇐⇒ xj+1xj+2 · · · /∈ (1d0)∗1d+1

A
ω ∪ {(1d0)ω}.

This is equivalent to the statement of the lemma.
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0 •111

•11•1

0|0

1|1

1|0

0|1

0|1

0|1
0|0

1|1

(Fig. 3-2) Transducer accepting the greedy
expansion of x ∈ [l,1) on the input and the bal-
anced one of it on the output; the Tribonacci
case.

Lemma 3-10. For the balanced d-Bonacci expansions, we have that

PB = { •(1n−101d−n)ω : 1 6 n 6 d } = { •1n : 1 6 n 6 d }.

Proof. Consider any x ∈ Z[β] ∩ [l, l + 1), where we denote l := 2−β
2β−2 so that

IB = [l, l + 1). Since d-Bonacci numbers have Property (F) for greedy expan-
sions [FS92], we know that each x ∈ Z[β] ∩ IB ∩ [0, 1) = Z[β] ∩ [l, 1) has a finite
representation x = •x1x2 . . . xk with xk = 1, and we put xi := 0 for all i > k, for
convenience. Suppose x = •y1y2y3 · · · is the balanced expansion of x. Denote

si := •yi+1yi+2yi+3 · · ·︸ ︷︷ ︸
∈[l,l+1)

− •xi+1xi+2xi+3 · · ·︸ ︷︷ ︸
∈[0,1)

.

Then si ∈ (l−1, l+1) for all i. We have that s0 = x−x = 0 and also, si+1 = βsi+

xi − yi. Denoting this transition si
xi|yi−−−→ si+1, we can construct a transducer. It

is not difficult to see that only the states 0 and •1n with 1 6 n 6 d are reachable
from s0 = 0, simply by verifying that any other transition that the ones listed
below would lead to a state which is outside of the interval (l − 1, l + 1). The
transitions are the following:

0
0|0−−→ 0, 0

1|1−−→ 0, 0
1|0−−→ •1d, •1

0|0−−→ •1d, •1
1|1−−→ •1d,

•1n
0|1−−→ •1n−1 for 1 6 n 6 d.

The transducer is depicted in Figure 3-2 for the case d = 3. When i > k, we get
that xi+1xi+2 · · · = 0ω. The transducer contains only two cycles which read 0ω

on the input (see the thick arrows in Figure 3-2). First, it is the loop 0 0|0−−→ 0;
however, it outputs 0ω, which is forbidden as a balanced expansion. Second,
it is the cycle •1d

0|1−−→ •1d−1 0|1−−→ · · · 0|1−−→ •1
0|0−−→ •1d. This cycle has the string

(1d−10)ω as an output; therefore every balanced expansion of x ∈ Z[β] ∩ [l, 1)

has (1d−10)ω as a suffix.
For numbers x ∈ Z[β] ∩ (1, l+ 1) we observe that TnB (x) < 1 for some n ∈ N,

therefore the balanced expansions of these numbers have (1d−10)ω as a suffix
as well.

We conclude that the purely periodic points in Z[β] are •(1d−10)ω and points
in its orbit, which is the claim of the lemma.
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0(01-1)ω

1-1001(-110)ω

(1-10)ω

0-110(-101)ω

0(0-11)ω

01-11-10(10-1)ω

1-10(01-1)ω

01-110(-101)ω

-11-110(-101)ω

-1010(-101)ω

001(-110)ω

0-10(10-1)ω

00(-101)ω

-101(-110)ω

00-10(10-1)ω

10(0-11)ω

(-101)ω

10(-101)ω

100-1(1-10)ω

0(10-1)ω

1(-110)ω

-100(10-1)ω

0-10(01-1)ω

(0-11)ω

01-1(1-10)ω

-10(10-1)ω

01(-110)ω

-110(-101)ω

0-11-10(10-1)ω

-1001(-110)ω

-101-110(-101)ω

010(0-11)ω

-11(-110)ω

(01-1)ω

1-10(10-1)ω

-1(1-10)ω

0-101(-110)ω

010-1(1-10)ω

100(-101)ω

10-11-10(10-1)ω

010(-101)ω

00(10-1)ω

0(-101)ω

0010(-101)ω

0-11(-110)ω

00-1(1-10)ω

-10(01-1)ω

0-11-110(-101)ω

-110(0-11)ω

1-11-10(10-1)ω

10-1(1-10)ω

-1100-1(1-10)ω

1-1(1-10)ω

10-10(10-1)ω

(-110)ω

0-1(1-10)ω
-11-10(10-1)ω

(10-1)ω

01-10(10-1)ω

1-110(-101)ω

(Fig. 3-3) The multiple tiling for the symmetric β-transformation with β = ϕt
the Tribonacci constant.

Proof of Proposition 3-7. To prove that TB induces a tiling (i.e., that mB = 1), it
suffices to find z ∈ Z[β] that lies in only one tile. To this end, let z = βd + 1 =

10d−11•. Put k := 4d; we will see that this choice of k satisfies the hypothesis
of Lemma 3-8 for all y ∈ PB. Let y = •1n with 1 6 n 6 d. Then, because
10d• = 01d•, we get that

y+β−4dz = •1n0d−n 0d 0d−11 0d−11 0ω

= •1n−101d−n1n0d−n 0d−11 0d−11 0ω

•1n−101d−n1n−101d−n1n0d−n−110d (1d−10)ω if n 6 d− 2,
=

 •1d−201 1d−10 0d−11 0d (1d−10)ω if n = d− 1,
•1d−10 1d 0d−11 0d (1d−10)ω if n = d.

None of the strings we derived contains 0d+1 nor 1d+1 as a factor, therefore
they are the balanced expansions of y+ β−4dz by Lemma 3-9. Also, we know
that y = •(1n−101d−n)ω and the strings have 1n−101d−n as a prefix, so the
hypothesis of Lemma 3-8 is satisfied. From this we get that

T4dB (y+ β−4dz) = •(1d−10)ω = 1 for all y ∈ PB,

whence z lies in only one tile, namely RB(1).
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1000-1(10-10)ω

10-110(0-101)ω

-10001(-1010)ω

10-11-1(1-100)ω

0010-1(01-10)ω

00-11-1(1-100)ω

-101-10(010-1)ω 01000-1(1-100)ω

-11000-1(1-100)ω

00-10(010-1)ω

0010(0-101)ω

0(-1001)ω

(1-1)ω

(-11)ω

1-11-1(1-100)ω

(01-10)ω(1-100)ω

1(-1010)ω

100(-1001)ω

1-110-1(01-10)ω

0(0-101)ω

0100(-1001)ω

1-110(0-101)ω (0-101)ω

0-11-1(1-100)ω

-1100(-1001)ω

(10-10)ω
-1(10-10)ω

0-110(0-101)ω

0100-1(10-10)ω

(001-1)ω

(-1001)ω (-1010)ω 0-1(1-100)ω

-11-10(010-1)ω

01-11-1(1-100)ω

0-1001(-1010)ω

01-10(010-1)ω

0(001-1)ω

-1(01-10)ω

-1(1-100)ω

1-1(1-100)ω

-1010(0-101)ω

0(010-1)ω
10-10(010-1)ω

00-1(1-100)ω

(010-1)ω

(Fig. 3-4) A cross section through the multiple tiling for the symmetric β-
transformation with β the 4-Bonacci constant.

Proof of Theorem 3-2. We know from Proposition 3-7 thatmB = 1, and from (-)
that |N(β− 1)| = d− 1. The statement then follows from Theorem 3-1.

3-5 The minimal Pisot case

For all the d-Bonacci numbers, TB induces a single tiling. However, for β = ϕp,
the minimal Pisot number, we know from [KS12, § 4.5.2] that TS induces a double
tiling, i.e., that mS = 2; this tiling is depicted in Figure 3-5. Together with the
fact that β− 1 = β−4, whence β− 1 is a unit and |N(β− 1)| = 1, we get that TB
induces a double tiling.

3-6 Continuation of the work

We finish this chapter with several open questions:

Problem 3a. Is there any c0 ∈ (ϕp, 2) such that the balanced expansions induce
a single tiling for all Pisot units β ∈ (c0, 2)?

Problem 3b. What is the degree of the multiple tiling for the symmetric expan-
sions for the (d, a)-Bonacci numbers, i.e., roots of Xd = aXd−1 + aXd−2 + · · ·+
aX+ a for d > 2 and a > 2?

Problem 3c. Consider the transformation Tβ,l : [l, l+ 1)→ [l, l+ 1), x 7→ βx−

bβx+ lc, for a d-Bonacci number β. We know that Tβ,0 induces a single tiling,
because β has Property (F) [FS92]. We know from this article that Tβ,−1/2
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10(-101-110-11)ω

-110(-101-110-11)ω

10-101-1(1-110-11-10)ω

1-110(-101-110-11)ω

(1-101-110-1)ω

(-11-101-110)ω

-110-11(-11-101-110)ω

010-10(10-11-101-1)ω

0-1010-11(-11-101-110)ω

-101-110(-101-110-11)ω

1-101-1(1-110-11-10)ω

0-11-1010-11(-11-101-110)ω

10-1010-11-10(10-11-101-1)ω

-1010-10(10-11-101-1)ω

0-11(-11-101-110)ω

0-1010-10(10-11-101-1)ω

10-11(-11-101-110)ω

010-11(-11-101-110)ω

0-10(10-11-101-1)ω

-110-101-1(1-110-11-10)ω

-1010-11(-11-101-110)ω

01-110-1010(-101-110-11)ω

010-1010-10(10-11-101-1)ω

-101-110-101-1(1-110-11-10)ω

010(-101-110-11)ω

-101-1(1-110-11-10)ω

010-1010(-101-110-11)ω

01-1(1-110-11-10)ω

1-110-11(-11-101-110)ω

10-1010(-101-110-11)ω

10-1010-10(10-11-101-1)ω

01-110-101-1(1-110-11-10)ω

0-1010-11-10(10-11-101-1)ω

0-11-10(10-11-101-1)ω

(0-11-101-11)ω

(-101-110-11)ω

01-110(-101-110-11)ω

-110-1010-11(-11-101-110)ω

0-1010-1010(-101-110-11)ω

10-10(10-11-101-1)ω

10-101-110(-101-110-11)ω

1-1(1-110-11-10)ω

1-1010-10(10-11-101-1)ω

-11-1010-11(-11-101-110)ω

1-11-101-110(-101-110-11)ω

010-11-10(10-11-101-1)ω

0-101-110(-101-110-11)ω

0-11-1010-10(10-11-101-1)ω

1-110-101-1(1-110-11-10)ω

-110-1010(-101-110-11)ω

0-101-1(1-110-11-10)ω

1-1010(-101-110-11)ω

-110-1010-10(10-11-101-1)ω

-1010-11-10(10-11-101-1)ω

1-1010-101-1(1-110-11-10)ω

1-110-1010(-101-110-11)ω

-11-110(-101-110-11)ω

-1010(-101-110-11)ω

1-1010-1010(-101-110-11)ω

010-101-110(-101-110-11)ω

-11-110-11-10(10-11-101-1)ω

010-1010-11(-11-101-110)ω

0(10-11-101-1)ω

-11-10(10-11-101-1)ω 10-11-1010-11(-11-101-110)ω

-11(-11-101-110)ω

-1(1-110-11-10)ω

0(-101-110-11)ω

-1010-101-110(-101-110-11)ω

1-1010-11(-11-101-110)ω

0-1010-101-1(1-110-11-10)ω

-110-10(10-11-101-1)ω

10-11-10(10-11-101-1)ω

010-101-1(1-110-11-10)ω

0-1010(-101-110-11)ω

-1010-1010(-101-110-11)ω

(01-110-11-1)ω

(10-11-101-1)ω

-11-101-1(1-110-11-10)ω

(-110-11-101)ω

-11-1010-10(10-11-101-1)ω

(1-110-11-10)ω

1(-11-101-110)ω

1-10(10-11-101-1)ω

-10(10-11-101-1)ω

(Fig. 3-5) The multiple tiling for the symmetric β-transformation with β = ϕp
the minimal Pisot number.

induces a multiple tiling of covering degree d− 1. What happens if −1
2 < l < 0?

What are the possible values of the degree?

Problem 3d. What can we say about the symmetric transformation for β > 2? Is
it possible that it always induces a single tiling?
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4-1 Introduction

In this chapter, we are going to investigate an interesting property of the Greedy
β-expansions. We recall that they are given by the transformation

TG : [0, 1)→ [0, 1), x 7→ βx− bβxc.

For β ∈ N, we recover the standard expansions in base β and the β-expansion
of x ∈ [0, 1) is eventually periodic (i.e., there exist p, n such that xk+p = xk for
all k > n) if and only if x ∈ Q. This result was generalized to all Pisot bases
by Schmidt [Sch80], who proved that for a Pisot number β the expansion of
x ∈ [0, 1) is eventually periodic if and only if x is an element of the number
field Q(β). Moreover, he showed that when β satisfies β2 = aβ+ 1, then each
x ∈ [0, 1) ∩Q has a purely periodic β-expansion.

Akiyama [Aki98] showed that if β is a Pisot unit satisfying Property (F) then
there exists c > 0 such that all rational numbers x ∈ Q ∩ [0, c) have a purely
periodic expansion. If β is not a unit, then a rational number p/q ∈ [0, 1) can
have a purely periodic expansion only if q is co-prime to the norm N(β). As an
example, we know that the expansion of 1/6 in base 2 is •0010101 · · · , which is
not purely periodic. Many Pisot non-units satisfy that there exists c > 0 such
that all rational numbers p

q ∈ [0, c) with q co-prime to b have a purely periodic
expansion. This stimulates for the following definition:

Definition 4-1. Let β be a Pisot number, and let N(β) denote the norm of β.
Then we define γ(β) ∈ [0, 1] as the maximal c such that all p

q ∈ Q ∩ [0, c) with
gcd(q,N(β)) = 1 have a purely periodic β-expansion. In other words,

γ(β) := inf{pq ∈ Q ∩ [0, 1) : gcd(q,N(β)) = 1,

p
q has a not purely periodic greedy β-expansion} ∪ {1}.
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K K ′

Kf

(Fig. 4-1) The natural extension domain for β = 1+
√
3.

The question is how to determine the value of γ(β). As well, knowing when
γ(β) = 0 or 1 is of big interest. Values of γ(β) for whole classes of numbers as
well as for particular numbers have been given [Aki98, ABBS08, AS05, MS14,
Sch80]. Generic results on the cubic case were obtained [AFSS10] stating that
when β is a cubic number, then γ(β) > 0 if and only if β is a Pisot unit with
Property (F). Periodic quadratic unit Ito-Sadahiro (negative base) expansions
were studied [MP13].

It is easy to observe that the expansion of x is purely periodic if and only
if x is a periodic point of TG, i.e., there exists p > 1 such that TpGx = x. The
natural extension (X, T ) of the dynamical system ([0, 1), TG) can be defined
in an algebraic way, cf. § 2-3-1. An example of the natural extension domain
is in Figure 4-1. Several authors contributed to proving the following result:
A point x ∈ [0, 1) has a purely periodic β-expansion if and only if x ∈ Q(β) and
its diagonal embedding lies in the natural extension domain X. The quadratic
unit case was solved by M. Hama and T. Imahashi [HI97], the confluent unit
case by S. Ito and Y. Sano [IS01, IS02]. Then S. Ito and H. Rao [IR05] resolved
the unit case completely using an algebraic argument. For non-unit bases β,
one has to consider finite (p-adic) places of the field Q(β). This consideration
allowed V. Berthé and A. Siegel [BS07] to expand the result to all (non-unit) Pisot
numbers.

The first values of γ(β) for two particular quadratic non-units were provided
by Akiyama et al. [ABBS08]. Recently, Minervino and Steiner [MS14] described
the boundary of X for quadratic non-unit Pisot bases. This allowed them to find
the value of γ(β) for an infinite class of quadratic numbers:

Theorem 4-2 [MS14]. Let β be the positive root of β2 = aβ + b for a > b > 1 two
co-prime integers. Then

γ(β) =

{
1−

(b−1)bβ
β2−b2 if a > b(b− 1),

0 otherwise.

In particular, γ(β) = 1 if and only if b = 1.
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This chapter is organized as follows: In the next section, the main results
are stated. In § 4-4, properties of β-adic expansions are studied. Section 4-5
connects tiles arising from the β-transformation and the value γ(β) in order to
prove Theorem 4-4. The proof of Theorem 4-5 is completed in § 4-6, together
with that of Theorem 4-6. Comments on the general case are in § 4-7. A list of
related open questions closes the chapter.

4-2 Main results

The purpose of this chapter is to generalize Theorem 4-2 to all quadratic Pisot
numbers with norm N(β) < 0. (Note that when N(β) > 0, then β has a positive
Galois conjugate β ′ > 0 and γ(β) = 0 [Aki98, Proposition 5].) To this end,
we define β-adic expansions (not to be confused with the Rényi β-expansions)
similarly to p-adic expansions with p ∈ Z, see also § 4-4.

Definition 4-3. Let β be an algebraic integer. The β-adic expansion of x ∈ Z[β] is
the unique infinite word h(x) := u0u1u2 · · · such that un ∈ {0, 1, . . . , |N(β)|− 1}

and x−
∑n−1

i=0 uiβ
i ∈ βnZ[β] for all n ∈ N.

Theorem 4-4. Let β be a quadratic Pisot number, root of β2 = aβ+ b with a > b > 1.
Then

γ(β) =



0 if supj∈Z〈h(j− β);β ′〉 > β
or infj∈Z〈h(j);β ′〉 < −1,

β− a if supj∈Z〈h(j− β);β ′〉 ∈ (2β− a− 1, β]

and infj∈Z〈h(j);β ′〉 > β− a− 1,

1+ infj∈Z〈h(j);β ′〉 otherwise,

where 〈u0u1u2 · · · ;X〉 :=
∑

n>0 unX
n.

In many cases, we obtain the following direct formula (which we conjecture
to be true for all a > b > 1):

Theorem 4-5. Let β be a quadratic Pisot number, root of β2 = aβ+ b for a > b > 1.
Suppose a > 1+

√
5

2 b or a = b or gcd(a, b) = 1. Then

γ(β) = max{0, 1+ inf
j∈Z
〈h(j);β ′〉}. (-)

The infimum in (-) can be easily computed with the help of Proposition 4-11
below. In the case a

b ∈ Z, Proposition 4-13 provides an even faster algorithm,
and we are able to prove a necessary and sufficient condition for γ(β) = 1:

Theorem 4-6. Let β be a quadratic Pisot number, root of β2 = aβ+ b with a > b > 1
and such that b divides a.

1. We have that γ(β) = 1 if and only if a > b2 or (a, b) ∈ {(24, 6), (30, 6)}.

2. If a = b > 3 then γ(β) = 0.
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4-3 Notation

For the purposes of this chapter, we fix some convenient notation. We denote by
Prefn u the prefix of length n of an infinite word u.

To a finite word w = w0w1 . . . wk−1 we assign the polynomial

〈w;X〉 :=
k−1∑
i=0

wiX
i.

Similarly, 〈u; X〉 :=
∑

i>0 uiX
i is a formal power series for an infinite word

u = u0u1u2 · · · .
For integers a, b ∈ Z, we denote by a ⊥ b the fact that a and b are co-prime,

i.e., that gcd(a, b) = 1. Moreover, for b > 2 we put Zb := {p/q : p, q ∈ Z, q ⊥ b }
(the ring of rational numbers with denominator co-prime to b).

Since we consider only quadratic non-unit β, we get that K := Q(β) admits
a unique non-identical Galois isomorphism, which we denote x 7→ x ′. We also
have the representation spaces as introduced in § 2-1-2, and we put

Sf := { xf : x ∈ S } for any S ⊆ K.

In particular, we consider Z[β]f, which is a compact subset of Kf. Since multipli-
cation by βf is a contraction on Kf, we have that βn

f Z[β]f → {0f} as n→∞.
We consider only quadratic Pisot numbers, whence there is only one non-

identical Galois isomorphism, we denote x 7→ x ′, and we denote K ′ accordingly.

4-4 Beta-adic expansions

In Definition 4-3, β-adic expansions are defined on Z[β]. By Lemma 4-8 below,
we extend this definition to the closure Z[β]f similarly to the p-adic case. To this
end, let

H : Z[β]f → Z[β]f, x 7→ β−1
f (x− d(x)f),

where d(x) is the unique digit d ∈ A := {0, 1, . . . , |N(β)|− 1} such that β−1
f (x−

df) is in Z[β]f. Such d exists because Z[β] = A + βZ[β]. It is unique because
(c + βZ[β])f ∩ (d + βZ[β])f 6= 0/ implies (β−1(c − d))f ∈ Z[β]f and thus c ≡ d
(mod N(β)) by the following lemma:

Lemma 4-7 [MS14, Lemma 5.2 and Eq. (5.1)]. For each x ∈ Z[β−1] \ Z[β] we have
xf /∈ Z[β]f. There exists k ∈ N such that Z[β−1] ∩ βk

OK ⊆ Z[β].

Lemma 4-8. The β-adic expansion map hf : Z[β]f → Aω defined by

hf(z) := u0u1u2 · · · , where ui := d(Hi(z)),

is a homeomorphism. It satisfies that hf(xf) = h(x) for all x ∈ Z[β].
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Proof. The map hf is surjective because hf(〈u;βf〉) = u for all u ∈ Aω. It is
injective because hf(z) = u = u0u1u2 · · · implies that z ∈

∑n−1
i=0 uiβ

i
f +β

n
f Z[β]f

for all n, thus z = 〈u;βf〉.
Since (OK)f is open and Z[β−1]f = Kf, we get from Lemma 4-7 that Z[β]f =⋃

x∈Z[β] xf + β
k
f (OK)f for some k ∈ N, and therefore it is an open set as well.

Then the pre-image h−1
f (wAω) = 〈w;βf〉+βn

f Z[β]f is open for anyw ∈ A∗. As
the cylinders {wAω :w ∈ A∗ } form a base of the topology ofAω, the map hf
is continuous.

The inverse h−1
f is continuous because βn

f Z[β]f → {0f} as n→∞.
For x ∈ Z[β], the equality hf(xf) = h(x) follows from the fact that β−1(x −

d(xf)) ∈ Z[β].

Note that we can identify Z[β]f with the inverse limit space lim←−Z[β]/β
nZ[β].

Indeed defining the map κ : Aω → lim←−Z[β]/β
nZ[β],

u0u1u2 · · · 7→ (ξ1, ξ2, ξ3, . . . ), where ξn =

n−1∑
i=0

uiβ
i,

the following diagram commutes:

Z[β]f Z[β]f

A
ω

A
ω

lim←−Z[β]/β
nZ[β] lim←−Z[β]/β

nZ[β].

H

h∼= h∼=

(shift)

κ∼= κ∼=

We recall that an inverse limit space lim←−Xn is given by a sequence of sets (X1, X2,

X3, · · · ) and by maps fn : Xn+1 → Xn, and it is the space of sequences (ξ1,

ξ2, ξ3, . . . ) such that ξn ∈ Xn and fn(ξn+1) = ξn for all n. In the case of
the inverse limit space lim←−Z[β]/β

nZ[β], we have that βn+1Z[β] is a sub-ring of
βnZ[β], therefore Z[β]/βn+1Z[β] embeds naturally into βnZ[β] and fn is this
embedding.

4-5 Rauzy fractals and the value γ(β)

The connection between the Rauzy fractals and the value γ(β) is established by
the following theorem:

Theorem 4-9 [HI97, IR05, BS07]. For a Pisot number β, we have that x has a purely
periodic greedy β-expansion if and only if x ∈ Q(β) and Ψ0,f(x) ∈ X.

We recall thatΨ0,f is the embedding ofQ(β) intoRd×Kf andX is the domain
of the natural extension of (TG, [0, 1)) as given in § 2-3-1.
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[0, β − a)[l0, r0]

Kf

K ′

Q(0)

∂+
Q(0)

∂
− Q(0

)

[β − a, 1)[lβ−a, rβ−a]

γ(β)
Kf

K ′

Q(β − a)

(Fig. 4-2) The tiles Qf(0) and Qf(β − a) for β = 1 +
√
3. The (red) stripes

illustrate the intersection of Y = K ′ × (Z)f with the tiles.

The goal of this section is to prove Theorems 4-4 and 4-5, using the connection
between β-tiles and the value of γ(β). First we prove the following lemma about
the closures of Z and Zb in Kf:

Lemma 4-10. We have that (Z)f = (Zb)f = (Zb ∩ [l, r])f for all l < r.

Proof. We have that (Zb)f = (Zb ∩ [l, r])f by [ABBS08, Lemma 4.7]. Clearly
Z ⊆ Zb whence (Z)f ⊆ (Zb)f. We will prove that (Zb)f ⊆ (Z)f, namely that every
point x/q ∈ Zb for x, q ∈ Z and q ⊥ b can be approximated by integers. For
each n ∈ N, there exists qn ∈ Z such that qnq ≡ 1 (mod bn). Then x

q − qnx =

(1− qnq)
x
q ∈

1
qb

nZ ⊆ 1
qβ

nZ[β], therefore (qnx)f → (x/q)f.

Proof of Theorem 4-4. By Definition 4-1, Theorem 4-9 and since (1,Ψf(1)) /∈ X, we
have that

γ(β) = inf{ x ∈ Zb : x > 0, Ψ0,f(x) /∈ X }.

For x ∈ Q ∩ [0, β− a), the condition Ψ0,f(x) ∈ X is equivalent to Ψf(x) ∈ Qf(0);
for x ∈ Q ∩ [β− a, 1), it is equivalent to Ψf(x) ∈ Qf(β− a).

We recall the results of [MS14, § 9.3], where the shape of the tiles is described.
The intersection of Qf(x) with a line K ′ × {z} is a line segment for any z ∈ Z[β]f
and it is empty for all z ∈ Kf \ Z[β]f, see Figure 4-2. Let ∂−Qf(x) denote the
set of the segments’ left end-points, and similarly ∂+Qf(x) the set of the right
end-points. Put

lx := supπ ′(∂−Qf(x) ∩ Y) and rx := inf π ′(∂+Qf(x) ∩ Y) for x = 0, β− a,

where Y := K ′ × (Zb)f ⊆ K ′ × Z[β]f and π ′ denotes the projection π ′ : K ′ × Kf →
K ′, (y, z) 7→ y. Then all numbers p/q ∈ Zb in [l0, r0] ∩ [0, β − a) have a purely
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β− a a+ 1− β β− a− 1 a− β

a−b+1, . . . , a

0, 1, . . . , b−1

0, 1, . . . , b−1 a−b, . . . , a−1

(Fig. 4-3) Boundary graph for quadratic β-tiles, cf. [MS14, Fig. 6]. Each arrow
in the graph represents exactly b edges.

periodic expansion, and so do all numbers p/q ∈ Zb in [lβ−a, rβ−a] ∩ [β− a, 1).
Outside these two sets, numbers p/q ∈ Zb that do not have a purely periodic
expansion are dense, since the points Ψf(p/q) are dense in Y by Lemma 4-10.
Therefore, the value ofγ(β)depends on the relative position of the above intervals
(see Figure 4-2) in the following way:

γ(β) =


0 if l0 > 0 or r0 < 0,
r0 if l0 6 0 and r0 ∈ [0, β− a),
β− a if l0 6 0, r0 > β− a and β− a /∈ [lβ−a, rβ−a],
min{rβ−a, 1} if l0 6 0, r0 > β− a and β− a ∈ [lβ−a, rβ−a].

(-)

In the rest of the proof, we will show that

l0 = lβ−a − 1 = −β+ sup
j∈Z
〈h(j− β);β ′〉, (-)

r0 = rβ−a = 1+ inf
j∈Z
〈h(j);β ′〉. (-)

As infj∈Z〈h(j);β ′〉 6 〈h(0);β ′〉 = 0, we see that (-) implies the statement of
the theorem.

We use results of [MS14, §§ 8.3, 9.2 and 9.3], namely Equations (8.4) and (9.2),
which read:

z ∈ Rf(x) ∩ Rf(y) if and only if z = Ψf(x) + 〈u;Ψf(β)〉,

where u = v0v1v2 · · · is an edge-labelling of a path in the boundary graph in
Figure 4-3 that starts in the node y− x; and

∂Rf(x) =
(
Rf(x) ∩ Rf(x+ β− bx+ βc)

)
∪
(
Rf(x) ∩ Rf(x− β− bx− βc)

)
,

where the first part is the left boundary R−
f (x) and the second part is the right

boundary R+
f (x). Therefore

∂−Rf(0) = ∂
+
Rf(β− a) = { 〈u;Ψf(β)〉 : u ∈ (AB)ω },

∂+Rf(0) = {Ψf(a+ 1− β) + 〈u;Ψf(β)〉 : u ∈ (AB)ω },

∂−Rf(β− a) = {Ψf(β− a) + 〈u;Ψf(β)〉 : u ∈ (AB)ω },

where we put B := {a−b+1, a−b+2, . . . , a}. We have that

{ 〈u;Ψf(β)〉 : u ∈ (AB)ω } = {
〈
((b− 1)a)ω;Ψf(β)

〉
− 〈u;Ψf(β)〉 : u ∈ Aω }

= −Ψf(1) − { 〈u;Ψf(β)〉 : u ∈ Aω },
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sinceA = b− 1−A and B = a−A. Because Qf(x) = Ψf(x) − Rf(x), we have
∂±Qf(x) = Ψf(x) − ∂

∓
Rf(x). We obtain

∂−Qf(0) = Ψf(β− a) + { 〈u;Ψf(β)〉 : u ∈ Aω },

∂−Qf(β− a) = Ψf(β− a+ 1) + { 〈u;Ψf(β)〉 : u ∈ Aω },

∂+Qf(0) = ∂
+
Qf(β− a) = Ψf(1) + { 〈u;Ψf(β)〉 : u ∈ Aω }.

We have that

Ψf(1) + 〈u;Ψf(β)〉 ∈ Y ⇐⇒ 1f + 〈u;βf〉 ∈ Zf

⇐⇒ 〈u;βf〉 ∈ Zf ⇐⇒ u ∈ hf(Zf),

because hf(〈u;βf〉) = u and hf is a homeomorphism by Lemma 4-8. Then, since
the map Zf → K ′, z 7→ 〈hf(z);β ′〉 is continuous, we get that

inf π ′(∂+Qf(x) ∩ Y) = 1+ inf
z∈Zf
〈hf(z);β ′〉 = 1+ inf

j∈Z
〈h(j);β ′〉,

which justifies (-). Similarly, Ψf(β − a) + 〈u;Ψf(β)〉 ∈ Y if and only if u ∈
hf(Zf − βf), therefore

supπ ′(∂−Qf(β−a)∩Y)−1 = supπ ′(∂−Qf(0)∩Y) = β ′−a+sup
j∈Z
〈h(j−β);β ′〉.

Since β ′ − a = −β, this justifies (-).

Proof of Theorem 4-5, case a > 1+
√
5

2 b. Since β ′ < 0, we have that

sup
j∈Z
〈h(j− β);β ′〉 6 sup

u∈Aω

〈u;β ′〉 =
〈
((b−1)0)ω;β ′〉 = b− 1

1− (β ′)2
.

We will show that this quantity is < 2β− a− 1. First, we derive, using (β ′)2 =

aβ ′ + b, β = a− β ′ and 1− (β ′)2 > 0, that it is equivalent to

a+ ab+ β ′(a2 + a+ 2b− 2) > 0. (-)

We know that β < a + 1, therefore β = a + b
β >

a(a+1)+b
a+1 and β ′ = −b

β >

−
(a+1)b
a2+a+b

. As well, a2 + a+ 2b− 2 > 0, therefore we estimate

a+ab+β ′(a2+a+2b−2) >
ab2((ab )

2− a
b −1)+b2((ab )

2+2ab −2)+2b

a2+a+b
.

When a
b >

1+
√
5

2 , all three terms in the numerator are positive. Since the denomi-
nator is also positive, we get that supj∈Z〈h(j−β);β ′〉 < 2β−a− 1. Theorem 4-4
then implies (-).
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table 4-1
The values of γ(β) for the case when b divides a. The star ‘?’ means

that the value is strictly between 0 and 1.

a/b = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 ? 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1

5 0 ? ? ? 1 1 1 1 1 1 1 1 1 1 1

6 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1

7 0 ? ? ? ? ? 1 1 1 1 1 1 1 1 1

8 0 ? ? ? ? ? ? 1 1 1 1 1 1 1 1

9 0 ? ? ? ? ? ? ? 1 1 1 1 1 1 1

10 0 ? ? ? ? ? ? ? ? 1 1 1 1 1 1

11 0 0 ? ? ? ? ? ? ? ? 1 1 1 1 1

12 0 0 ? ? ? ? ? ? ? ? ? 1 1 1 1

The proof of the case a ⊥ b of Theorem 4-5 was given in [MS14, § 9]. The
proof of the case a = b is given in the next section on page 40, because it falls
under the case when b divides a.

The following proposition shows how to compute the infimum in Theorem 4-5
and thus the value of γ(β) in a lot of (and possibly all) cases. Comments on the
computation of γ(β) by Theorem 4-4 are in Section 4-7. We recall that Prefn u

denotes the prefix of u of length n.

Proposition 4-11. Let β2 = aβ+ b with a > b > 2. Then for each n ∈ N we have

inf
j∈Z
〈h(j);β ′〉 ∈ min

j∈{0,1,...,bn−1}

〈
Prefn h(j);β ′〉+ (β ′)n b−1

1−(β ′)2
[β ′, 1]. (-)

Lemma 4-12. Let x, y ∈ Z[β] satisfy that x − y ∈ bnZ[β]. Then Prefn h(x) =

Prefn h(y).

Proof. Since b = β2 − aβ ∈ βZ[β], we have that x − y ∈ βnZ[β]. Let h(x) =

u0u1 · · · . Then x−
∑n−1

j=0 ujβ
j ∈ βnZ[β] and therefore y−

∑n−1
j=0 ujβ

j ∈ βnZ[β],
which means that u0 · · ·un−1 is a prefix of h(y).

Proof of Proposition 4-11. Set µn := minj∈{0,1,...,bn−1}〈Prefn h(j);β ′〉. The state-
ment actually consists of two inequalities, which will be proved separately. Let
j ∈ Z. Since Prefn h(j) = Prefn h(jmod bn) by Lemma 4-12 and since β ′ < 0,
we have

〈h(j);β ′〉 >
〈
Prefn h(j)(0(b−1))ω;β ′〉 > µn + (β ′)n+1 b−1

1−(β ′)2
if n is even,

〈h(j);β ′〉 >
〈
Prefn h(j)((b−1)0)ω;β ′〉 > µn + (β ′)n b−1

1−(β ′)2
if n is odd.
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table 4-2
Numerical values of γ(β), where β2 = aβ+ b, that

correspond to the first several ‘?’ in Table 4-1.

a b γ(β)

2 2 0.914803044196 · · ·

6 3 0.992963560101 · · ·

8 4 0.933542944675 · · ·
12 4 0.999897789000 · · ·

10 5 0.834150794175 · · ·
15 5 0.995306723671 · · ·
20 5 0.999999907110 · · ·

12 6 0.736114178272 · · ·
18 6 0.993897266395 · · ·

a b γ(β)

14 7 0.584906533458 · · ·
21 7 0.944526094618 · · ·
28 7 0.997984788082 · · ·
35 7 0.999986041767 · · ·
42 7 0.9999999999997111 · · ·

16 8 0.351975291826 · · ·
24 8 0.920692804616 · · ·
32 8 0.993476100312 · · ·
40 8 0.999605537625 · · ·
48 8 0.999999588706 · · ·
56 8 0.9999999999999826 · · ·

To prove the other inequality, let k ∈ {0, . . . , bn − 1} be such that µn =

〈Prefn h(k);β ′〉. Then

〈h(k);β ′〉 6
〈
Prefn h(k)((b−1)0)ω;β ′〉 = µn + (β ′)n b−1

1−(β ′)2
if n is even,

〈h(k);β ′〉 6
〈
Prefn h(k)(0(b−1))ω;β ′〉 = µn + (β ′)n+1 b−1

1−(β ′)2
if n is odd;

this provides the upper bound on the infimum.

4-6 The case b divides a

In this section, we aim to prove Theorem 4-6, which deals with the particular case
when b divides a. Table 4-1 shows whether γ(β) is 0, 1 or strictly in between,
for b 6 12 and a/b 6 15. The first non-trivial values are listed in Table 4-2. The
algorithm for obtaining these values is deduced from Theorem 4-5 (which covers
all the cases when a

b ∈ Z since then either a = b or a > 2b > 1+
√
5

2 b), and the
following proposition, which improves the statement of Proposition 4-11.

Proposition 4-13. Let β2 = aβ+ b with a > b > 2 and a
b ∈ Z. Then for each n ∈ N

we have

inf
j∈Z
〈h(j);β ′〉 ∈ min

j∈{0,1,...,bn−1}

〈
Pref2n h(j);β ′〉+ (β ′)2n b−1

1−(β ′)2
[β ′, 0].

Lemma 4-14. Let β2 = cbβ + b. Let x, y ∈ Z[β] satisfy that x − y ∈ bnZ[β] for
some n ∈ N. Then Pref2n h(x) = Pref2n h(y). Moreover, for all x ∈ Z[β] and d ∈ A
there exists y ∈ x+ bnA such that Pref2n+1 h(y) = Pref2n h(x)d.

Proof. We have β2 = b(cβ + 1) ∈ bZ[β] and b = β2 − c(1 + c2b)β3 + c2β4 ∈
β2 + β3Z[β] ⊆ β2Z[β], whence β2Z[β] = bZ[β] and β2nZ[β] = bnZ[β] for
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all n ∈ N. Following the lines of the proof of Lemma 4-12, we obtain that if
x− y ∈ bnZ[β] then h(x) and h(y) have a common prefix of length at least 2n.

Let h(x) = u0u1 · · · be the Hensel expansion of x. Since bn ∈ β2n +

β2n+1Z[β], we have that u0u1 · · · u2n−1d is a prefix of h(x + ebn) for any
e ≡ d− u2n (mod b).

Proof of Proposition 4-13. We follow the lines of the proof of Proposition 4-11 for
the case n even. The lower bound is the same in both statements, therefore
we only need to prove that infj∈Z〈h(j); β ′〉 6 〈Pref2n h(k); β ′〉, where k :=

arg minj∈{0,...,bn−1}〈Pref2n h(j);β ′〉. For eachm ∈ N, there exists km ∈ Z such
that Pref2n+2m h(km) ∈ Pref2n h(k)(0A)m by Lemma 4-14. Then

inf
j∈Z
〈h(j);β ′〉 6 inf

m∈N
〈h(km);β ′〉 6 inf

m∈N

〈
Prefn h(k)(00)m((b−1)0)ω;β ′〉

= 〈Prefn h(k);β ′〉.

Remark 4-15. We have that

µn := min
j∈{0,1,...,bn−1}

〈Pref2n h(j);β ′〉 = min
j∈Jn−1+bn−1A

〈Pref2n h(j);β ′〉, (-)

where

J0 := {0},

Jn := { j ∈ Jn−1 + bn−1
A : 〈Pref2n h(j);β ′〉 < µn + |β ′|2n+1 b−1

1−(β ′)2 }.

To verify (-), we first show that the sequence (µn)n∈N is non-increasing. Let
j ∈ {0, . . . , bn− 1} be such that µn = 〈Pref2nh(j);β ′〉. Then by Lemma 4-14 there
exists d ∈ A such that Pref2n+1 h(j+ db

n) = Pref2n h(j)0, whence µn+1 6
〈Pref2n+2 h(j+ db

n);β ′〉 6 µn.
Suppose now that j ∈ {0, . . . , bn − 1} \ (Jn−1 + bn−1

A). Then there ex-
ists m < n such that 〈Pref2m h(j); β ′〉 > µm + |β ′|2m+1 b−1

1−(β ′)2
, therefore

〈Pref2n h(j);β ′〉 > µm > µn.

Example 4-16. As an example, the computation of γ(β) for β = 1+
√
3, the Pisot

root of β2 = 2β+ 2, is visualized in Figure 4-4. For each step of the algorithm,
the value of γ(β) lies in the left-most interval. Already in the 5th step we obtain
that γ(β) ∈ [0.900834, 0.970552], therefore it is strictly between 0 and 1. Note that
in the 9th step we have that µ9 = 〈t(9);β ′〉with t(9) = 001100010101010001, and
γ(β) ∈ [0.91012665225, 0.91587668314]. In the 40th step, we have that t(40) =

001100(01)4000100(0001)4(00)2(01)5(00)3(01)6(00)201 and γ(β) ≈ 0.914803044.
In the 200th step, we obtain

γ(1+
√
3) ≈ 0.914803044196658195047293139393794152694998618733976175733141835762361.
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0 1
ε

00 10

0000
0011

000000
000010

001100
001110

00000000
00000011

00110001
00110010

0000000000
0000000010

0000001100
0000001110

0011000101
0011000111

000000000000
000000000011

001100010101
001100010110

00110001010101
00110001011011

0011000101010100
0011000101100111

001100010101010001
001100010110010011

001100010101011100
001100010110011111

(Fig. 4-4) The computation of γ(1+
√
3). By a thick line with a bold label we

denote the intervals that we ‘keep’ (these arise from numbers in Jn), by a thin line
the ones that we ‘forget’. The labels next to the intervals are the corresponding
prefixes Pref2n h(j).

Proof of Theorem 4-5, case a = b. Take a = b > 4. Then b = β2 + (b − 1)β3 +

(2b+ 1)β4, therefore Pref4 h(b) = 001(b−1). According to Proposition 4-13, we
have that

A := inf
j∈Z
〈h(j);β ′〉 6 〈001(b−1);β ′〉 = (β ′)2 + (b− 1)(β ′)3.

For a = b > 5, we use the estimate −β ′ ∈ ( b
b+1 , 1) to obtain that A < 1 −

b3(b−1)
(b+1)3

< −1, therefore γ(β) = 0. For a = b = 4, we have 〈001(b−1);β ′〉 ≈
−1.0193, thus A < −1.

When a = b = 3, we verify that Pref12 h(21) = 001200020201 and Proposi-
tion 4-13 yields A 6 〈001200020201;β ′〉 ≈ −1.0726 < −1, therefore γ(β) = 0.

When a = b = 2, we can follow the lines of the proof of the case a > 1+
√
5

2 b,
because we observe that (-) is satisfied, namely 6+ 8β ′ ≈ 0.1436 > 0.

The proof of Theorem 4-6 is divided into several cases.

Proof of Theorem 4-6, case a > b2. Any j ∈ Z \ {0} can be written as j = bn(j0 +

j1b), where n ∈ N, j0 ∈ A \ {0} and j1 ∈ Z. Then Pref2n+1 h(j) = 0
2nj0 because
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bn ∈ β2n + β2n+1Z[β], whence

〈h(j);β ′〉 >
〈
Pref2n+1 h(j)((b− 1)0)

ω;β ′〉 > 〈
02n1((b− 1)0)ω;β ′〉

= (β ′)2n
(
1+

(b− 1)β ′

1− (β ′)2

)
= (β ′)2n

(
1−

(b− 1)bβ

β2 − b2

)
> 0,

where the last inequality was already proved in [MS14, Theorem 6]. As h(0) =
0ω, we have 〈h(0);β ′〉 = 0. From Theorem 4-5 we conclude that γ(β) = 1 +

infj∈Z〈h(j);β ′〉 = 1.

The remaining cases of the proof of Theorem 4-6 make use of the following
relations. Let c := a/b ∈ Z. Then b

β2 = 1
1+cβ ∈ 1− cβ+ c2β2 − c3β3 + β4Z[β],

and more generally,

bn

β2n
∈ 1− ncβ+ (n+1

2 )c2β2 − (n+2
3 )c3β3 + β4Z[β] for any n ∈ N. (-)

For j = (j0 + j1b)b
n with n ∈ N, and j0, j1 ∈ Z we have that j

β2n = j0
bn

β2n +

j1β
2 bn+1

β2n+2 , therefore

j

β2n
∈ j0 − j0ncβ+

(
j0(

n+1
2 )c2 + j1

)
β2

−
(
j0(

n+2
3 )c3 + j1(n+ 1)c

)
β3 + β4Z[β]. (-)

Proof of Theorem 4-6, case β2 = 30β+ 6. We have b = 6 and c = 5. As in the proof
of the previous case, we will show that 〈h(j);β ′〉 > 0 for all j ∈ Z. Let j 6= 0 be writ-
ten as j = bn(j0 + j1b) with j0 ∈ A \ {0} and j1 ∈ Z, then h(j) = 02nu0u1u2 · · ·
for some u0u1 · · · ∈ Aω with u0 = j0, and 〈h(j);β ′〉 = (β ′)2n〈u0u1 · · · ;β ′〉.
We consider the following cases:

If u0 > 2, then 〈u0u1 · · · ;β ′〉 > 〈2(50)ω;β ′〉 > 0.

If u0 = 1 and u1 6 4, then 〈u0u1 · · · ;β ′〉 > 〈14(05)ω;β ′〉 > 0.

If u0u1 = 15, then (-) yields that j0 = 1 and −j0nc ≡ 5 (mod 6), therefore
n ≡ −1 (mod 6) and n = 6n1 − 1, i.e., −j0ncβ = 5β − 30n1β ∈ 5β −

5n1β
3 + β4Z[β]. Therefore

j

β2n
∈ 1+ 5β+

(
(6n1

2 )52 + j1

)
β2

−
(
(6n1+1)6n1(6n1−1)

6 53 + 30n1j1 + 5n1

)
β3 + β4Z[β].

The coefficient of β3 is congruent to 0modulo 6 regardless of the values of n1

and j1. This means that u3 = 0. Then 〈15u20(05)ω;β ′〉 > 〈1500(05)ω;β ′〉 >
0.

Therefore we have 〈h(j);β ′〉 > 0 for all j ∈ Z.
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Proof of Theorem 4-6, case β2 = 24β+ 6. We have b = 6 and c = 4. We use the
same technique as in the case β2 = 30β+ 6.

If u0 > 2, then 〈u0u1 · · · ;β ′〉 > 〈2(50)ω;β ′〉 > 0.

If u0 = 1 and u1 6 3, then 〈u0u1 · · · ;β ′〉 > 〈13(05)ω;β ′〉 > 0.

Since c is even, we get that u1 ≡ −j0nc (mod 6) is even, therefore u0u1 6= 15.

If u0u1 = 14, then (-) gives j0 = 1 and −j0nc ≡ 4 (mod 6), i.e., n ≡ −1

(mod 3) and n = 3n1 − 1, whence −j0ncβ = 4β − 12n1β ∈ 4β − 2n1β
3 +

β4Z[β]. We derive that

j

β2n
∈ 1+ 4β+ (some integer)β2 − (144n3

1 − 30n1 + 12n1j1)β3 + β4Z[β].

As above, we get that u3 = 0 regardless of the values of n1 and j1, thus
〈u0u1 · · · ;β ′〉 > 〈1400(05)ω;β ′〉 > 0.

Proof of Theorem 4-6, case c := a/b < b and c /∈ {4, 5} when b = 6. Let n := d c
b−ce.

From (-), the β-adic expansion h(bn) starts with 02n1(nb−nc). If c
b−c /∈ Z,

then we have nb − nc > c and thus 〈1(nb−nc);β ′〉 6 1 + (c + 1)β ′ < 0, using
that β ′ = −b

β < − b
cb+1 6 − 1

c+1 . By Proposition 4-13, this proves that γ(β) < 1
if c is not a multiple of b− c.

Assume now that c
b−c ∈ Z, i.e., n = c

b−c . For j := bn − (n+1
2 )c2bn+1, we

have by (-) that

j

β2n
∈ 1− ncβ−

(
(n+2

3 )c3 − (n+1
2 )c3(n+ 1)

)
β3 + β4Z[β].

Since −nc = c− nb ∈ c− nβ2 + β3Z[β] and (n+ 1)c = nb ∈ βZ[β], we obtain
that

j

β2n
∈ 1+ cβ−

(
(n+2

3 )c3 + n
)
β3 + β4Z[β].

If (n+2
3 )c3 + n 6≡ 0 (mod b), then

〈Pref2n+4 h(j);β ′〉 6 〈02n1c01;β ′〉 = (β ′)2n(1+ cβ ′ + (β ′)3)

=
(β ′)2n+2

b
+ (β ′)2n+3 = (β ′)2n+2β− b2

bβ
< 0,

since 1+ cβ ′ =
(β ′)2

b and β < a+ 1 6 b2, therefore γ(β) < 1 by Proposition 4-13.
It remains to consider the case that (n+2

3 )c3 + n ≡ 0 mod b, i.e.,

n ≡ −
bn(n+ 2)

6
c2n mod b,

because (n+ 1)c = nb. Multiplying by b− c gives

c ≡ −
bn(n+ 2)

6
c3 mod b.

Note that bn(n+2)
6 = (b− c)(n+2

3 )∈ Z. We distinguish four cases:
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1. If 6 ⊥ b, then c ≡ 0 mod b, contradicting that 1 6 c < b.

2. If 2 | b and 3 - b, then c is a multiple of b/2, i.e., c = b/2, n = 1. As n is also
a multiple of b/2, we get that b = 2, thus c = 1. For β2 = 2β+ 2, we already
know that γ(β) < 1, see Example 4-16.

3. If 3 | b and 2 - b, then c andn are multiples of b/3. For c = b/3we haven /∈ Z.
For c = 2b/3, we have n = 2, thus b ∈ {3, 6}. However, b = 6 contradicts 2 - b
and b = 3 (i.e., c = 2) contradicts (n+2

3 )c3 + n ≡ 0 mod b.

4. If 6 | b, then c and n are multiples of b/6, thus c ∈ {b/2, 2b/3, 5b/6}, n ∈
{1, 2, 5}. If n = 1, then b = 6, thus c = 3, and (n+2

3 )c3 + n 6≡ 0 mod b. If
n = 2, then b ∈ {6, 12}; we have excluded that b = 6, c = 4; for b = 12, c = 8,
we have (n+2

3 )c3 + n 6≡ 0 mod b. If n = 5, then b ∈ {6, 30}; we have excluded
that b = 6, c = 5; for b = 30, c = 24, we have (n+2

3 )c3 + n 6≡ 0 mod b.

4-7 The general quadratic case

In the general quadratic case where 2 6 gcd(a, b) 6 b − 1, the conditions
of Theorem 4-5 need not be satisfied. This means that we have to rely on the
more general Theorem 4-4, i.e., to compute the two values infj∈Z〈h(j);β ′〉 and
supj∈Z〈h(j− β);β ′〉.

We can derive, in a similar manner to Proposition 4-11, that for all n ∈ N,

sup
j∈Z
〈h(j− β);β ′〉 ∈ max

j∈{0,1,...,bn−1}
〈Prefn h(j− β);β ′〉

+ (β ′)n b−1
1−(β ′)2

[β ′, 1]. (-)

Let now sn > 1, for n ∈ N, denote the smallest positive integer such that
sn ∈ βnZ[β], and rn := sn

sn−1
. Then x, y ∈ Z have a common prefix of length

n if and only if y − x ∈ snZ. Therefore, in both (-) and (-) we can take
{0, 1, . . . , sn − 1} instead of {0, 1, . . . , bn − 1}. Moreover, following Remark 4-15,
we can further restrict to the sets

J0 := {0}, J ′0 := {−β},

Jn := { j ∈ Jn−1 + sn−1{0, . . . , rn − 1} : 〈Prefn h(j);β ′〉 6 µn + |β ′|n b−1
1+β ′ },

J ′n := { j ∈ Jn−1 + sn−1{0, . . . , rn − 1} : 〈Prefn h(j);β ′〉 > νn − |β ′|n b−1
1+β ′ },

where

µn := min
j∈{0,...,bn−1}

〈Prefn h(j);β ′〉, νn := max
j∈{0,...,bn−1}

〈Prefn h(j− β);β ′〉.

4-8 Continuation of the work

We conclude by several open questions and problems that arise in the study of
rational numbers with purely periodic expansions:
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Problem 4a. Prove or disprove that γ(β) = 1 for quadratic Pisot number β > 1,
a root of β2 = aβ+ b, if and only if a

b ∈ Z and a > b2 or (a,b) ∈ {(24, 6), (30, 6)}.

Problem 4b. For which quadratic β we have that γ(β) = 0? Can we drop
the restrictions on a and b in Theorem 4-5? More specifically, is it true that
a < 1+

√
5

2 b implies γ(β) = 0?

Problem 4c. What is the structure of the prefixes of β-adic expansions of integers
for a general quadratic β?

Problem 4d. What about the cubic Pisot case? S. Akiyama and K. Scheicher
[AS05] showed how to compute the value γ(β) for β = ϕp the minimal Pisot
number. B. Loridant et al. [LMST13] gave the contact graph of the β-tiles for
cubic units, which could be used to determine γ(β) for the units, in a similar
way to what Akiyama and Scheicher did. The consideration of the β-adic spaces
could then allow the results to be expanded to non-units as well.
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5-1 Introduction

A spectrum of a number β that is > 1 in modulus with a fixed finite alphabet
A ⊂ C is the set of all linear combinations of powers of βwith coefficients in the
alphabet:

A[β] := { x0 + x−1β+ x−2β
2 + · · ·+ x−Nβ

N :N ∈ N, xi ∈ A }.

As many authors before, we restrict in most results the alphabet to the form
Am := {0, 1, . . . ,m}. The biggest interest is in exploring the Delone properties
of spectra, i.e., in knowing under what conditions the spectrum is uniformly
discrete and relatively dense, and in determining the minimal and maximal
distances between consecutive points. In the real case β > 1,Am[β] ⊂ R+ has
no accumulation points, therefore we can enumerate its elements — there exists
an increasing sequence

0 =: x0 < x1 < x2 < · · · (-)

such thatAm[β] = { xk : k ∈ N }. Several authors have been interested in deter-
mining the values `m(β) := lim inf(xk+1−xk) and Lm(β) := lim sup(xk+1−xk).
Values `1(β) and L1(β) have been studied by P. Erdős et al. [EJK90, EJJ92, EJK98].
The value of `m(β) for allmwas first determined for β = ϕg the Golden mean
by V. Komornik, P. Loreti and M. Pedicini [KLP00] and then for all quadratic
Pisot units by T. Komatsu [Kom02]; Lm(ϕg) was determined for all m at once
by P. Borwein and K. Hare [BH03]. Z. Masáková, K. Pastirčáková and E. Pelan-
tová [MPP15] show, for all quadratic Pisot units β and all m > bβc, which
distances between consecutive points of the spectra appear infinitely many
times. Another approach was taken by Borwein and Hare, and D.-J. Feng and Z.-
Y. Wen [BH02, FW02] who independently provided an algorithm that can be
used to determine the values `m(β) and Lm(β) for a fixedm and β.
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In this chapter, we concentrate on the spectra of complex numbers. Since in
the complex plane, we cannot enumerate the elements of the spectra as nicely as
in (-), we have to figure out a different approach to defining `m(γ) and Lm(γ)

for a complex number γ that is > 1 in modulus.

Definition 5-1. Let γ ∈ C \ R andm ∈ N,m > 1. We denote

`m(γ) := inf{ |x− y| : x, y ∈ Am[γ], x 6= y };

Lm(γ) := sup{D > 0 : ∃z ∈ C such that BD(z) ∩Am[γ] = 0/}.

We immediately see that `m(γ) > 0 if and only ifAm[γ] is uniformly discrete
and Lm(γ) <∞ if and only if it is relatively dense (cf. § 2-4).

5-2 Main results

In this chapter, we present two main results. The first is very general and applies
to all complex spectra arbitrary alphabets (certainly it applies to the alphabets
Am):

Theorem 5-2. Let γ ∈ C be a non-real number > 1 in modulus. SupposeA ⊆ C is an
alphabet with 0 ∈ A whose cardinality satisfies #A < |γ|2. Then the spectrumA[γ] is
not relatively dense.

This is a complex counterpart to a result of P. Erdős and V. Komornik [EK98]
showing that the same is true for β real and #A < β (they show it for integer
alphabets, the generalization to arbitrary alphabets is straightforward).

We also provide an algorithm for obtaining the value of `m(γ) and Lm(γ)

for allm at once, given a cubic complex Pisot unit γwith the following specific
property:

Definition 5-3. We say that a cubic complex Pisot unit γ satisfies Property (F ′) if
the number 1/γ ′ is positive and satisfies Property (F) for greedy β-expansions.
Here, we denote γ ′ ∈ R the unique real Galois conjugate of γ.

The algorithm is described in detail in Algorithms 5-12 and 5-17. Applied to
the case of the complex Tribonacci constant, we get the following:

Theorem 5-4. Let γ = γt ≈ −0.771 + 1.115i be a root of X3 + X2 + X − 1 = 0, let
m ∈ N \ {0}, and let k ∈ Z be the greatest integer such thatm > (1− γ ′

t )(
1
γ ′

t
)
k, where

γ ′
t is the real Galois conjugate of γt. Then we have

`m(γt) = |γt|
−k and Lm(γt) = 2

√
1− (γ ′

t )
2

3− (γ ′
t )

2 |γt|
3−k. (-)

The set of cubic units satisfying Property (F) for greedy β-numeration was
described by S. Akiyama [Aki00, Theorem 3]. From his result, we deduce that γ
root of X3 = −bX2 − aX+ 1 satisfies Property (F ′) if and only if

|b− 1| 6 a, b > −1 and − 18ab− 4a3 + a2b2 + 4b3 − 27 < 0.
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The first two conditions are due to Akiyama, the last one is a condition on the
polynomial determinant that assures the polynomial has complex roots. This
implies that there are infinitely many numbers γ satisfying (F ′); for instance, all
cases a > 1 and b = 0,±1, with the exception (a, b) = (1,−1).

5-3 Proof of Theorem 5-2

To prove Theorem 5-2, we cannot easily follow the lines of the proof of the result
for the real case (i.e., that #A < β implies Lm(β) = +∞), because it relies on
the natural ordering of R. So we have to use a different technique, based on the
following ‘folklore’ lemma about the asymptotic density of relatively dense sets:

Lemma 5-5. Let Λ ⊂ C be a relatively dense set. Then

lim inf
r→∞ #(Λ ∩ Br)

r2
> 0, (-)

where Br := { z ∈ C : |z| < r } is the ball of radius r centered at 0.

Proof. Since Λ is relatively dense, there exists λ > 0 such that every square in
C with side λ contains a point of Λ. Therefore every cell of the lattice λZ[i] =
{ λa + iλb : a, b ∈ Z } contains a point of Λ. Since Br contains at least n2 cells,
where n =

⌊
r
√
2/λ

⌋
, we get

lim inf
r→∞ #(Λ ∩ Br)

r2
> lim inf

r→∞ br
√
2/λc2

r2
=
2

λ2
> 0.

Proof of Theorem 5-2. For simplicity, we denote Λ := A[γ] the spectrum, and
c := maxa∈A |a|.

First, we show that for any r > cwe have

Λ ∩ B|γ|r−c ⊆ γ(Λ ∩ Br)+A

and therefore
#(Λ ∩ B|γ|r−c) 6 #A #(Λ ∩ Br). (-)

To prove this, consider x =
∑k

j=0 ajγ
j with aj ∈ A and such that |x| < |γ|r− c.

Then y := (x − a0)/γ =
∑k

j=1 ajγ
j−1 ∈ Λ and |y| 6 (|x| + a0)/|γ| < (|γ|r − c +

c)/|γ| = r. Since x = γy+ a0, the inclusion is valid.
Our aim is to prove that under the assumption #A < |γ|2, the set Λ is not

relatively dense. According to Lemma 5-5, it is enough to construct a sequence
(rk) such that rk →∞ and

lim
k→∞

#(Λ ∩ Brk)
r2k

= 0.

Consider a sequence given by the recurrence relation rk+1 = |γ|rk − c and
r0 := 1+ c

|γ|−1 > c. The choice of r0 guarantees that rk = |γ|k + c
|γ|−1 , therefore
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rk →∞ and rk+1/rk → |γ|. Eventually rk > c and (-) gives #(Λ ∩ Brk+1
)) 6

#A #(Λ ∩ Brk)), which yields

#(Λ ∩ Brk+1)/r
2
k+1

#(Λ ∩ Brk)/r
2
k

6
#A r2k
r2k+1

k→∞−−−→ #A
|γ|2

< 1,

therefore #(Λ ∩ Brk)/r
2
k → 0 as desired.

5-4 Model sets versusAm[γ]

We recall from (-) that to a real Pisot number β of degree three such that β
has one pair of complex Galois conjugates β ′ and (β ′)†, the associated model
(cut-and-project) set is

Λβ(Ω) = { z ∈ Z[1/γ] : z ′ ∈ Ω }, whereΩ ⊆ R is an interval (-)

and where we denote γ = 1/β ′. We now show howAm[γ] fits into the cut-and-
project scheme:

Theorem 5-6. Let γ be a cubic complex Pisot unit with Property (F ′), i.e., with a real
positive conjugate γ ′ such that 1/γ ′ has Property (F). Letm be an integerm > |γ|2 − 1.
ThenAm[γ] is a model set, namely

Am[γ] = Λβ(Ω) = { z ∈ Z[γ] : z ′ ∈ Ω } withΩ =
[
0,m/(1− γ ′)). (-)

Proof. Inclusion ⊆: Let z ∈ Am[γ]. Then z =
∑n

j=0 ajγ
j with aj ∈ {0, . . . , m}

and clearly z ∈ Z[γ]. Moreover,

0 6 z ′ =
n∑

j=0

aj(γ
′)j 6

n∑
j=0

m(γ ′)j <
m

1− γ ′ .

Inclusion⊇: Let us take z ∈ Z[γ] with z ′ ∈ Ω. Denote β = 1/γ ′ = γγ† = |γ|2.
We discuss the following two cases:

1. Suppose 0 6 z ′ < 1. The real base β has Property (F) by the hypoth-
esis. Therefore every number from Z[1/β] ∩ [0, 1) has a finite expansion
•a1a2a3 . . . an over the alphabet {0, . . . ,m0}, wherem0 := bβc. This means
that z ′ =

∑n
j=1 ajβ

−j and therefore z =
∑n

j=1 ajγ
j ∈ Am0

[γ]. Since
Am0

[γ] ⊆ Am[γ], we get z ∈ Am[γ].

2. Suppose 1 6 z ′ < m/(1− γ ′). Since z ′ <
∑∞

j=0mβ
−j, there exists a minimal

k > 0 such that z ′ −
∑k

j=0mβ
−j < 0. Let b ∈ {0, . . . ,m} be such that

0 6 z ′ −
k−1∑
j=0

mβ−j − bβ−k < β−k,
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where
∑−1

j=0mβ
−j := 0. Then

u ′ := βk

(
z ′ −

k−1∑
j=0

mβ−j − bβ−k

)
satisfies 0 6 u ′ < 1, and by the previous case there exist a1, . . . , an ∈
{0, . . . ,m0} such that u ′ =

∑n
j=1 ajβ

−j. Altogether,

z ′ =

k−1∑
j=0

m(γ ′)j + b(γ ′)k +

k+n∑
j=k+1

aj−k(γ
′)j

and z ∈ Am[γ].

The property of cut-and-project sets which allows us to determine the values
of `m(γ) and Lm(γ) is the self-similarity. We say that a Delone set Λ ⊆ C is
self-similar with a factor κ ∈ C, |κ| > 1, if κΛ ⊆ Λ. In general, cut-and-project sets
are not self-similar. In our special case (-), not only the sets are self-similar, but
we can prove even a stronger property that will be useful later:

Proposition 5-7. Let γ be a cubic complex Pisot unit. Then

Λ((γ ′)kΩ) = γkΛ(Ω) for any intervalΩ and any k ∈ Z.

In particular, ifΩ = [0, c) and γ ′ is positive, then γ ′Ω ⊆ Ω and γΛ ⊆ Λ.

Proof. We prove the claim for k = ±1, the general case follows by induction.
Because Z[γ] = γZ[γ], we have that

Λ(γ ′Ω) = { x ∈ γZ[γ] : x ′ ∈ γ ′Ω } = { x ∈ γZ[γ] : 1
γ ′x

′ ∈ Ω }

= γ{y ∈ Z[γ] : y ′ ∈ Ω } = γΛ(Ω), (-)

which implies the validity of the statement for k = +1. If we apply (-) to the
window Ω̃ = γ ′Ω, we get Λ(Ω̃) = γΛ( 1

γ ′ Ω̃), i.e., 1
γΛ(Ω̃) = Λ( 1

γ ′ Ω̃), which
implies the validity of the statement for k = −1.

5-5 Voronoi tiling of model sets

We recall that for a Delone set Λ ⊆ C, the Voronoi tile of a point x ∈ Λ is the set
of points which are closer to x than to any other point in Λ. Formally

V(x) = { z ∈ C : |z− x| 6 |z− y| for all y ∈ Λ }. (-)

The tile is a convex polygon having x as an interior point, and {V(x)}x∈Λ is a
tiling of C. For every tileV(x) we define two characteristics:

δ(V(x)) is the maximal diameter d > 0 such that Bd/2(x) ⊆V(x);

∆(V(x)) is the minimal diameter D > 0 such thatV(x) ⊆ BD/2(x).
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These δ and ∆ allow us to compute the values of `m(γ) and Lm(γ), namely

`m(γ) = inf
x
δ(V(x)) and Lm(γ) = sup

x

∆(V(x)),

where x runs the whole set Λ = Am(γ).
A prototile of a point x is the setV(x) − x. We can define δ,∆ analogously for

the prototiles. The set of all prototiles of the tiling of Λ is called the palette of Λ.
We therefore obtain that

`m(γ) = inf
V

δ(V) and Lm(γ) = sup
V

∆(V), (-)

whereV runs the whole palette of Λ.
For computing δ(V) and ∆(V), we modify the approach of [MPZ03], where

2-dimensional cut-and-project sets based on quadratic irrationalities are con-
cerned. To find the Voronoi tile of a point x ∈ Λ(Ω) one does not need to consider
all points y ∈ Λ(Ω). It is easy to see that only points y closer to x than ∆(V(x))

influence the shape of the tileV(x), i.e.,

V(x) = { z ∈ C : |z− x| 6 |z− y| for y ∈ Λ(Ω), |y− x| 6 ∆(V(x)) }. (-)

But before the shape ofV(x) is known, we do not know the value of ∆(V(x)).
So we need to find some positive constant L such that

∆(V(y)) 6 L for all y ∈ Λ(Ω). (-)

In the rest of this section, we consider cut-and-project sets Λ(Ω) as given by
(-), where γ has Property (F ′), i.e., 1/γ ′ has Property (F), and whereΩ = [0, c)

with c > 0 (however, not necessarily of the form c = m
1−γ ′ ). We denote by

Re z = z+z†

2 and Im z = z−z†

2i respectively the real and the imaginary part of
z ∈ C.

Lemma 5-8. LetΩ = [0, c) be an interval. Let p be the first positive integer such that
Im(γp) and Im γ have the opposite signs and let k be the smallest integer satisfying
(γ ′)k < c/2. Then

L := |γ|k max
i,j∈{0,p−1,p}

i<j

∣∣∣γi+j(γi − γj)

Im((γj)†γi)

∣∣∣ (-)

satisfies ∆(V(y)) 6 L for all y ∈ Λ(Ω).

Proof. We first prove the statement for y = 0. The choice of k guarantees that
x1 := γk, x2 := γk+p−1 and x3 := γk+p satisfy x1, x2, x3 ∈ Λ(Ω), whereas the
choice of p guarantees that 0 is an inner point of the triangle U with vertices x1,
x2, x3 (see Figure 5-1). According to (-) we have

V := { z ∈ C : |z− 0| 6 |z− xj| for j = 1, 2, 3 } ⊇V(0).
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0

x1

x2x3

U

V

(Fig. 5-1) To the proof of Lemma 5-8.

Let ρ be the radius of the smallest ball centered at 0 and containing the whole
triangle V . From the definition ofV(x) and ∆(V(x)) we see that ∆(V(0)) 6 2ρ.

The vertices of V are the points v12, v23, v31 such that

|xi − vij| = |xj − vij| = |0− vij|. (-)

These equations have a unique solution

vij = i
xixj(x

†
i − x

†
j)

2 Im(xix
†
j)
, whence |vij| =

1

2

∣∣∣xixj(xi − xj)
Im(xix

†
j)

∣∣∣. (-)

Then ρ = max |vij|, thus the estimate (-) is valid for y = 0 and it remains to
show that it is valid for all y ∈ Λ(Ω). If y ′ ∈ [0, c/2) then the three points y+ xj
for j = 1, 2, 3 are inΛ(Ω). If y ′ ∈ [c/2, c) then the three points y− xj for j = 1, 2, 3
are in Λ(Ω). Both of these cases follow from the fact that x ′1, x ′2, x ′3 ∈ (0, c/2).
Therefore either x1, x2, x3 or −x1,−x2,−x3 are elements of Λ(Ω) − y, which
means that the same estimate (-) can be used.

To describe the palette of Λ(Ω), we find all possible L-patches, i.e., the local
configurations around the points of Λ(Ω) up to a distance L. We recall that an
L-patch of x ∈ Λ(Ω) is the set

ΠL(x) := (Λ(Ω) ∩ BL(x))− x. (-)

Since we consider the windowΩ = [0, c), the L-patch equals

ΠL(x) = { z ∈ Z[γ] : x ′ + z ′ ∈ [0, c) and |z| 6 L }. (-)

Lemma 5-9. Let x, y ∈ Λ(Ω) with Ω = [0, c) and L satisfying (-). Then the
equality of two L-patches ΠL(x) = ΠL(y) implies the equality of the prototiles, i.e.,
V(x) − x =V(y) − y.

Proof. Using (-) we can write

V(x) = { z ∈ C : |z− x| 6 |z− v| for all v ∈ Λ(Ω) ∩ BL(x) }

and thus
V(x) − x = { s ∈ C : |s| 6 |s−w| for all w ∈ ΠL(x) },

which depends only on ΠL(x) and not on x itself.
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Lemma 5-10. Let x, y ∈ Λ(Ω) with Ω = [0, c) and L > 0. If ΠL(x) 6= ΠL(y) then
there exists ξ from the following finite subset of [0, c]:

Ξ := { z ′ : z ∈ ΠL(0) } ∪ { c− z ′ : z ∈ ΠL(0) }, (-)

such that ξ lies between x ′ and y ′, more precisely, min{x ′, y ′} < ξ 6 max{x ′, y ′}.

Proof. Without loss of generality, suppose that there exists z such that z ∈ ΠL(x)

and z /∈ ΠL(y). According to (-) we have |z| 6 L, x ′ + z ′ ∈ [0, c), and
y ′ + z ′ /∈ [0, c).

If x ′ < y ′ then x ′ + z ′ < c 6 y ′ + z ′, therefore 0 6 x ′ < c − z ′ 6 y ′ < c

and thus x ′ and y ′ are separated by ξ := c− z ′. We have that c− z ′ ∈ (0, c), or
equivalently z ′ ∈ (0, c). As |z| 6 L, we conclude that z ∈ ΠL(0).

If x ′ > y ′ then y ′ + z ′ < 0 6 x ′ + z ′, therefore 0 6 y ′ < −z ′ 6 x ′ < c

and thus x ′ and y ′ are separated by ξ := −z ′. We have that −z ′ ∈ (0, c). As
|−z| = |z| 6 L, we conclude that −z ∈ ΠL(0).

The two lemmas enable us to partition the intervalΩ into sub-intervals such
that the points ofΛ(Ω) whose Galois conjugates lie in the same sub-interval have
the same prototile, formally:

Corollary 5-11. LetΩ = [0, c) be an interval. Then there exists a finite set Ξ = {ξ0 =

0 < ξ1 < · · · < ξN−1 < ξN = c} such that the mapping

x ′ 7→V(x) − x

is constant on [ξj−1, ξj) ∩ Z[γ ′] for each j = 1, . . . ,N.

Proof. Consider L satisfying (-) and let Ξ be given by (-). Suppose x, y ∈
Λ(Ω) satisfy x ′, y ′ ∈ [ξj−1, ξj). According to Lemma 5-10 we have ΠL(x) =

ΠL(y). Therefore by Lemma 5-9 their prototiles are equal.

The corollary is constructive and it allows us to compute all prototiles of the
Voronoi tiling of Λ(Ω) for a fixedΩ = [0, c):

Algorithm 5-12.

Input: γ satisfying (F ′),Ω = [0, c), L satisfying (-), e.g. given by (-).

Output: The palette of Λ(Ω).

1. Compute the set Ξ = {ξ0 = 0 < ξ1 < · · · < ξN−1 < ξN = c} given by (-).

2. For each interval [ξj, ξj+1) compute the corresponding L-patch.

3. Compute the corresponding prototiles to each of these patches.

4. Remove possible duplicates in the list of prototiles.
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x ′ ∈ [0, 1) x ′ ∈ [1, 1+ γ ′) x ′ ∈ [1+ γ ′, 1
γ ′ ) x ′ ∈ [ 1

γ ′ , 2+ γ ′)

x ′ ∈ [2+ γ ′, 1+ 1
γ ′ ) x ′ ∈ [1+ 1

γ ′ ,
1

γ ′2 ) x ′ ∈ [ 1

γ ′2 , 1+
1

γ ′2 )

(Fig. 5-2) Voronoi prototiles (the palette) for A2[γ] = Λ(Ω), where Ω =

[0, 2
1−γ ′ ) and γ = γt is the complex Tribonacci constant.

Example 5-13. We illustrate how the algorithm works for γ = γt the complex
Tribonacci constant and c = 2/(1 − γ ′) = β2 + 1, where we denote as usual
β := 1/γ ′. In this case, Λ[0, c) = A2[γ] by Theorem 5-6. We have k = −1

in Lemma 5-8 and since arg γ ∈ (π/2, π), we have p = 2. Therefore L is the
maximum of the values

1

|γ|

∣∣∣γ(γ− 1)

Imγ

∣∣∣ ≈ 1.877, 1

|γ|

∣∣∣γ2(γ2 − 1)

Im(γ2)

∣∣∣ ≈ 1.877, 1

|γ|

∣∣∣γ2(γ− 1)

Imγ

∣∣∣ ≈ 2.546,
i.e., L = |γ(γ − 1)|/ Im γ. The set { z ′ : z ′ ∈ Z[γ ′] ∩ [0, c) and |z| 6 L } contains
28 points. The set Ξ, given as a union of two 28-element sets in (-), has only
33 elements instead of 56 because many elements appear in both of them. This
gives 32 cases in steps 2–3 of the algorithm. After we remove the duplicates
in the list of the 32 prototiles, we end up with the list in Figure 5-2. The dou-
ble lines connect the center of the prototile with the centers of the neighboring
tiles. A part of the Voronoi tiling of Λ(Ω) is drawn in Figure 5-3. Note that all
computations are performed in the algebraic library of Sage [Sage]. Numbers
a+ bγ+ cγ2 ∈ Z[γ] are stored as triples of integers (a, b, c) and thus results of
all arithmetic operations are precise.

Let us determine the parameters `2(γ) and L2(γ), with the help of rela-
tions (-). For each prototile V, the value δ(V) is by definition the length
of the shortest double line in the picture ofV. In Figure 5-4, the 1st prototile is
depicted: the neighbors are (counterclockwise) x1 = 1, x2 = 2+ 2γ+ γ2 = γ−2,
x3 = 1 + γ + γ2 = γ−1 and x4 = 2 + γ + γ2 = 1 + γ−1. The closest point of
these to 0 is x2 = γ−2. For the last prototile, the closest point is analogously
−γ2. Therefore δ(V) = |γ−2| = γ ′ for the first and the last prototile. For the rest
of the prototiles, the closest point to 0 is ±(1 + γ + γ2) = ±γ−1, and therefore
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(Fig. 5-3) Part of the Voronoi tiling ofA2[γ] = Λ(Ω), whereΩ = [0, 2
1−γ ′ ) and

γ = γt is the complex Tribonacci constant. The point 0 is highlighted.

x2

v23 x1

v12

x4

v41

x3 v34

(Fig. 5-4) One of the prototiles ofA2[γ].

δ(V) = |γ−1| =
√
γ ′ = 1/

√
β. Since `2(γ) is the minimum of all δ(V), we get

that
`2(γ) = γ

′ ≈ 0.544.

To compute L2(γ), we first determine the value of ∆(V) for all prototiles. By
definition, ∆(V) is twice the maximal distance from 0 to the vertices ofV. The
vertices of the prototile are points vij satisfying that |xi−vij| = |xj−vij| = |0−vij|,
see Figure 5-4. This is the same condition as (-), thus the points vij are given
by (-). Therefore we have

|v12| =
1

2

∣∣∣γ−2(1− γ−2)

Im(γ−2)

∣∣∣ ≈ 0.692, |v23| =
1

2

∣∣∣γ−2(1− γ−1)

Im(γ−1)

∣∣∣ ≈ 0.692,
|v34| = |v41| =

1

2

∣∣∣γ−1(1+ γ−1)

Im(γ−1)

∣∣∣ ≈ 0.510.
Numerically, it seems that the first two values are equal. To see that this is true,
we only have to check that |1 + γ−1| = 2|Re(γ−1)|, because Im(z2)

Im z = 2Re z for
any non-real z ∈ C. Since γ−1 and (γ−1)† are the Galois conjugates of β root of
X3 = X2 +X+ 1, we have γ−1(γ−1)† = 1/β and γ−1 + (γ−1)† = 1−β by Vieta’s
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x ′ ∈ [0, γ ′) x ′ ∈ [γ ′, 1) x ′ ∈ [1, 1+ γ ′) x ′ ∈ [1+ γ ′, 1
γ ′ )

x ′ ∈ [ 1
γ ′ ,

1

γ ′2 − 1) x ′ ∈ [ 1

γ ′2 − 1, 1+ 1
γ ′ ) x ′ ∈ [1+ 1

γ ′ ,
1

γ ′2 )

(Fig. 5-5) Voronoi prototiles (the palette) for Λ(Ω), where Ω = [0, 1
γ ′2 ) and

γ = γt is the complex Tribonacci constant.

formulas. Now we easily verify that the numbers |1 + γ−1|
2 = (1 + γ−1)(1 +

(γ−1)†) and 4|Re(γ−1)|2 = (γ−1 + (γ−1)†)2 are equal. We can further simplify

|v23|
2 =

1

4

γ−2(γ−2)†(1− γ−1)(1− (γ−1)†)

( 1
2i(γ

−1 − (γ−1)†))
2

= β
β2 − 1

3β2 − 1
,

because we see that the left-hand side is a symmetric rational function in γ−1,

(γ−1)†, therefore Vieta’s formulas can be used to rewrite it in β’s.
Whence, for the 1st prototile, the maximal distance is ∆(V) = 2|v23|. It

turns out that this is the value of ∆(V) for all the prototiles of Λ(Ω). Therefore
L2(γ) = ∆(V(x)) for all x ∈ A2[γ] and the value is

L2(γ) = 2

√
β
β2 − 1

3β2 − 1
≈ 1.384.

Example 5-14. Let us give one more example. We fix the same γ = γt as before
and we take c = (γ ′)−2 = β2. Then p = 2 and k = 0 satisfy the hypothesis of
Lemma 5-8. Therefore

L =
∣∣∣γ2(γ− 1)

Imγ

∣∣∣ ≈ 3.4531
satisfies (-). In this case, Ξ is of size 40. Figure 5-5 denotes the result of
Algorithm 5-12. We get 7 different prototiles. The 4th one has δ(V) = 1, while
all the other ones have δ(V) =

√
γ ′. The value of ∆(V) is equal to 2

√
β β2−1

3β2−1
≈

1.384 for all of them.
We can now run Algorithm 5-12 again, using the better upper bound on

∆(V), namely L ≈ 1.384. This can save us a lot of steps of the algorithm: The
size of Ξ reduces from 40 to 8, so reduces the number of the steps. We will use
this improved value of L in § 5-6, where we study the sets Λ[0, c) for all c > 0.
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In the two examples, we listed the palettes of Λ[0, c) for two different values
c = β2 + 1 and c = β2. Two prototiles appears in both lists. The natural
question to ask is: For which values of c, a given prototile occurs in the palette
of Λ[0, c)? Using Lemma 5-9, this question can be transformed to an easier one:
for which values of c, a specific L-patch occurs in Λ[0, c). Since we now treat
L-patches for varying c, we denote them Πc

L(x), and for convenience we denote
(Πc

L(x))
′
:= { z ′ : z ∈ Πc

L(x) }.

Lemma 5-15. Let c0 > 0 be fixed, c ∈ (0, c0) and L > 0. Denote −c0 =: w0 < w1 <

· · · < wn−1 < wn := c0 the sequence of numbers such that

W := {w1, . . . , wn−1} = { z ′ ∈ Z[γ ′] : |z| 6 L and z ′ ∈ (−c0, c0) }. (-)

Then

1. For all x ∈ Λ[0, c) we have

Πc
L(x) ⊆ { z ∈ Z[γ] : z ′ ∈W }.

2. For all x ∈ Λ[0, c) there exist i, k ∈ N, 1 6 i 6 k 6 n− 1, such that

{wi, wi+1, . . . , wk} = (Πc
L(x))

′
.

3. Let 1 6 i 6 k 6 n− 1. Then a finite set {wi, wi+1, . . . , wk} containing 0 equals
(Πc

L(x))
′ for some x ∈ Λ[0, c) if and only if

wk −wi < c < wk+1 −wi−1. (-)

4. For all x ∈ Λ[0, c) there exists y ∈ Λ[0, c) such that Πc
L(y) = −Πc

L(x).

Proof. 1. As Λ[0, c) ⊆ Λ[0, c0) we have Πc
L(x) ⊆ Πc0

L (x) and the statement
follows from the relation (-).

2. Let i and k be the indices for which

wi = min(Πc
L(x))

′ and wk = max(Πc
L(x))

′
.

According to the relation (-) we get

0 6 x ′ +wi and x ′ +wk < c. (-)

Considerwj for j ∈ N, i < j < k. Thenwi < wj < wk, whence 0 6 wj + x
′ <

c. This implies that wj belongs to (Πc
L(x))

′ as well.
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3. (⇒) Because of (-), we have wk −wi < c. Since wi−1 and wk+1 do not
belong to (Πc

L(x))
′, we have x ′ + wi−1 < 0 and x ′ + wk+1 > c. Hence

wk+1 −wi−1 > c.

3. (⇐) Letwi−1,wi,wk,wk+1 satisfy (-). As Z[γ ′] is dense in R, there exists
u ∈ (wi−1, wi) such that u ∈ Z[γ ′] and u + c ∈ (wk, wk+1). Put x ′ := −u.
Then

x ′ +wi−1 < 0 < x
′ +wi < x

′ +wk < c < x
′ +wk+1.

Since wi 6 0 6 wk, we have that 0 < x ′ < c, therefore x ∈ Λ[0, c). We
conclude from item (2) that {wi, wi+1, . . . , wk} = (Πc

L(x))
′.

4. SinceW is a centrally symmetric set, i.e,W = −W, we have that wj = wn−j

for all 0 6 j 6 n. Then (-) is equivalent to

wn−i −wn−k < c < wn−i+1 −wn−k−1.

According to item (3), the set {wi, . . . , wk} is an L-patch for some x ∈ Λ[0, c)
if and only if {−wk, . . . ,−wi} is an L-patch for some y ∈ Λ[0, c).

Inequality (-) answers our question. To any L-patch, we can assign an
open interval such that this patch occurs in Λ[0, c) if and only if c lies in this
interval. This fact has an important consequence: for any given set of L-patches,
the range of c such that these patches are precisely the L-patches of Λ[0, c) is an
intersection of intervals and complements of intervals. As before, the result on
L-patches implies the following result on palettes.

Corollary 5-16. Let b0, c0 ∈ R satisfy that 0 < b0 < c0. Denote by Pal(Ω) the
palette of Λ(Ω), i.e., the set of all prototiles of Λ(Ω). Then there exists a finite sequence
b0 =: θ0 < θ1 < · · · < θN−1 < θN := c0 such that the mapping

c 7→ Pal([0, c))

is constant on each of the intervals (θj−1, θj) for j = 1, . . . ,N.

Proof. Consider L satisfying (-) for Λ = Λ[0, b0). ForW given by (-) find
θ1 < · · · < θN−1 such that

Θ := (W −W) ∩ (b0, c0) = {θ1, . . . , θN−1}. (-)

Let c, d ∈ (b0, c0) and suppose that the palette of Λ[0, c) does not coincide
with the palette of Λ[0, d). Without loss of generality there exists an L-patch of
x ∈ Λ[0, c) that is not an L-patch of any y ∈ Λ[0, d). This means that c satisfies
inequalities (-) for some indices i, k, whereas d does not satisfy them. This
fact implies that c and d are separated by a point wk −wi ∈W −W.

The previous corollary says that there exist only finitely many palettes for
Λ[0, c) with c ∈ [b0, c0). The following algorithm determines them:
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Algorithm 5-17.

Input: γ satisfying (F ′), 0 < b0 < c0, L satisfying (-) for Ω = [0, b0), e.g.
given by (-).

Output: All possible palettes Pal(Ω) of Λ(Ω) forΩ = [0, c) and b0 6 c < c0.

1. Compute the set Θ = {θ1 < · · · < θN−1} given by (-).

2. Using Algorithm 5-12, compute the palettes Pal(Ω) for all Ω = [0, c) with
c = b0,

b0+θ1

2 , θ1, . . . ,
θN−2+θN−1

2 , θN−1,
θN−1+c0

2 .

3. Remove possible duplicates in the list of palettes.

In Corollary 5-16 and Algorithm 5-17, the assumption b0 > 0 is very impor-
tant, because there exist infinitely many c ∈ (0, c0) with different palettes. How-
ever, these palettes cannot differ too much. In fact, the self-similarity property
(see Proposition 5-7) guarantees that the palette for the window [0, γ ′c) differs
from the palette for [0, c) only by a scaling factor γ. Therefore the knowledge of
the palettes for c ∈ [γ ′c0, c0) is sufficient for the description of all palettes.

Remark 5-18. As a consequence of item (4) of Lemma 5-15, the list of L-patches
for Λ[0, c) is invariant under rotation by 180°. Therefore the palette Pal([0, c)) is
invariant as well. Figures 5-2 and 5-5 witness this phenomenon.

5-6 Complex Tribonacci case. Proof of Theorem 5-4

In this section, we describe the details of the proposed workflow on an example
— the complex Tribonacci base γ = γt. We aim at the proof of Theorem 5-4.
As usual, β := γγ† = 1/γ ′. The theorem will be proved by combining the
self-similarity property in Proposition 5-7 and the following result:

Proposition 5-19. Let Ω = [0, c) with c ∈ (β2, β3), where β := 1/γ ′ and γ is the
complex Tribonacci constant. Denote Λ := Λ(Ω). Then

min
x∈Λ

δ(V(x)) = 1/β and max
x∈Λ

∆(V(x)) = 2
√
β

√
β2 − 1

3β2 − 1
. (-)

Proof. We put b0 := β2 and c0 := β3. In Example 5-14 we have shown that
L = 2

√
β
√

β2−1
3β2−1

≈ 1.384 satisfies (-) for Ω = [0, b0). Using this L, we
run Algorithm 5-17. The first step of the algorithm computes the set Θ defined
by (-). This Θ has 14 elements, they are drawn in the following picture:

θ1=

2β

β+2
=θ2

θ3=

2β2−β−1

−β2+3β+2
=θ4

θ5=

β2+β−1

β2+1
=θ6

θ7=

2β+1

2β2−2
=θ8

θ9=

2β2−β

β2+β
=θ10

θ11=

β2+2

2β+2
=θ12

θ13=

2β2−1

2β2−β+1
=θ14

β2

β3

The number of cases in step 2 of the algorithm is then 30. This means that we have
to run Algorithm 5-12 exactly 30 times to obtain all possible palettes. Amongst
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table 5-1
The prototiles for the complex Tribonacci constant for windows Ω = [0, c) with c ∈
[β2, β3). We put A := 2

√
β2−1

3β2−1
and B := A

√
β. Each tile in the list appears rotated by

180° as well, we omit these to make the table shorter; see Remark 5-18. For a cut-point θi,
the palette is the intersection of the palettes for the surrounding intervals, for instance

Pal([0, β2 + 1)) = {V2,V6,V8,V9,−V8,−V6,−V2}.

Interval for c The palette of Λ(Ω), whereΩ = [0, c)

β2

(β2, 2β)

(2β, β+ 2)

(β+ 2, β2 + 1)

(β2 + 1, 2β+ 1)

(2β+ 1, β2 + β)

(β2 + β,β2 + 2)

(β2 + 2, 2β+ 2)

(2β+ 2, β3)

Tile 1
γ
V4 V1

1
γ
V5 V2 V3

1
γ
V8 V4 V5 V6 V7 V8

1
γ
V10 V9 V10

Value of δ 1
β

1
β

1
β

1
β

1
β

1
β

1√
β

1√
β

1√
β

1√
β

1√
β

1√
β

1√
β
1

Value of ∆ A B A B B A B B B B B A B B

Value of ∆∗ 1 1 1 1 1 1
√
β
√
β
√
β
√
β
√
β 1

√
β
√
β

the 30 cases mentioned above, there are some duplicates, and we end up with
only 16 cases: 8 cases correspond to cut-points θ0, θ1, θ2, θ6, θ7, θ10, θ11, θ12, the
other 8 cases correspond to the open intervals between the cut-points. Moreover,
we observe that for each cut-point θi, the palette Pal([0, θi)) is the intersection of
the palettes of the two surrounding intervals. All the palettes for the intervals
are depicted in Table 5-1.

At the bottom of the table, the values of δ(V) and ∆(V) are written out for
each prototile. It turns out that every row of the table but the special case c = β2

has the minimal value of δ equal to 1/β ≈ 0.5437 and the maximal value of ∆
equal to 2

√
β
√

β2−1
3β2−1

≈ 1.3843.

We recall that two of the runs of Algorithm 5-12, for c = 2
1−γ ′ = β2 + 1 ∈ Θ,

i.e., forA2[γ], and for c = β2 are explained in Examples 5-13 and 5-14 (cf. also
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+

(Fig. 5-6) Part of Voronoi (in solid lines) and Delone
(in double lines) tilings ofA2[γ] for γ = γt the complex
Tribonacci constant. The white cross is a vertex of the
Voronoi tiling, and at the same time, it is the center of
the gray circle, on which four points ofA2[γ] lie.

(Fig. 5-7) Delone tiles of the setA2[γ], where γ = γt is the complex Tribonacci
constant.

Figures 5-2 and 5-5). We have drawn a part of the Voronoi tiling of A2[γ] in
Figure 5-3.

Proof of Theorem 5-4. The theorem is a direct corollary of Proposition 5-7, Theo-
rem 5-6, Proposition 5-19 and of the following two facts:

It cannot happen that c = m/(1 − γ ′) = (γγ†)k = βk for some m > 1 and
k ∈ Z. For, assume on the contrary that the last equation holds. Then βk > m
and so k > 1. Moreover, k > 3, since γ is cubic, and we have, by Galois
isomorphism, thatmγk = 1− γ. The relation |mγk| > |γ3| > |1− γ| yields a
contradiction.

If V is a Voronoi prototile in Λ(Ω) then γkV is a prototile in γkΛ(Ω) =

Λ((γ ′)kΩ) for any k ∈ Z. For any m ∈ N there exists k ∈ Z such that
(γ ′)k m

1−γ ′ ∈ (β2, β3).

5-7 Delone tiling — dual to Voronoi tiling

From the Voronoi tiling we can construct its dual tiling: Let Λ ⊆ C be a Delone
set. Consider a planar graph in Cwhose vertices are elements of the set Λ and
edges are line segments connecting x, y ∈ Λ where x and y are neighbors, i.e.,
their Voronoi tilesV(x) andV(y) share a side. This graph divides the complex
plane into faces; these faces are called Delone tiles. The collection of Delone tiles
is the Delone tiling of Λ.

All vertices of a Delone tile lie on a circle; its center is a vertex of the Voronoi
tiling. This is illustrated in Figure 5-6, which shows a small part of the setA2[γ],
where γ is the complex Tribonacci constant; the quadrilateral is inscribed in the
circle. The white cross marks the center of the circle and it is a common vertex of
four Voronoi tiles.

The minimal distance infx∈Λ δ(V(x)) is equal to the shortest edge in the
Delone tiling. On the other hand, the longest edge in the Delone tiling is (in
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table 5-2
The prototiles for the complex Tribonacci constant for windowsΩ = [0, c) with

c ∈ [β5, β6). We put A := 2
β

√
β2−1
3−β

and B := A
√
β. The remarks in Table 5-1 apply.

Interval for c The palette of Λ(Ω), whereΩ = [0, c)

β5

(β5, β4 + β)

(β4 + β, 2β3)

(2β3, β4 + β2)

(β4 + β2, β6)

Tile 1
γ
V1 V1

1
γ
V2 V2

1
γ
V3 V3 V4

1
γ
V5 V5

Value of δ 1
β2

√
β

1
β2

1
β2

1
β
√
β

1
β2

1
β
√
β

1
β
√
β

1
β
√
β

1
β

Value of ∆ A B A B A B B A B

Value of ∆∗ 1√
β

1 1
√
β 1

√
β
√
β 1

√
β

general) shorter than supx∈Λ∆(V(x)). Therefore, for a point x ∈ Λ(Ω) we can
define

∆∗(V(x)) := max{ |x− y| : y is a neighbor of x in Λ }

and study its maximum over all points x ∈ Λ.
We can apply this to the setsAm[γ]. We define

L∗m(γ) := sup
x∈Am[γ]

∆∗(V(x))

if Am[γ] is Delone, and L∗m(γ) = +∞ otherwise. When Am[γ] is a cut-and-
project set, we know that it has a finite local complexity and therefore finitely
many different Delone tiles up to translation.

In the case of the complex Tribonacci base, the shapes of all Delone tiles of
A2[γ] are depicted in Figure 5-7. From Table 5-1 we get the following result:

Theorem 5-20. With the hypothesis of Theorem 5-4, we have:

L∗m(γ) = |γ|3−k.

5-8 More examples

The procedure described in § 5-5, and used in § 5-6 on the complex Tribonacci
constant γt, can be used for other numbers that satisfy Property (F ′), for instance
for the complex plastic constant γp ≈ −0.877 + 0.745i root of X3 + X2 − 1 = 0.
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table 5-3
List of all pairs (a, b) with a 6 200 such that γ satisfies Property (F ′) and the minimal
distance between points of Λγ[0, 1) is not |γ|, where γ3 + bγ2 + aγ− 1 = 0. In all cases,

the minimal distance is the modulus of a unit in the field Q(γ).

a b Minimal distance

1 2 |γ|1/2

2 −1 |γ|1/2

2 3 |γ|1/4

4 4 |γ|1/2

6 5 |γ|1/5

9 6 |γ|1/2

12 7 |γ|1/9

16 8 |γ|1/2

25 10 |γ|1/2

a b Minimal distance

36 12 |γ|1/2

49 14 |γ|1/2

64 16 |γ|1/2

81 18 |γ|1/2

100 20 |γ|1/2

121 22 |γ|1/2

144 24 |γ|1/2

169 26 |γ|1/2

196 28 |γ|1/2

As the basic interval we choose the interval [β5, β6), where β = 1/γ ′
p ≈ 1.325

is the minimal Pisot number. The result of Algorithm 5-17 is in Table 5-2. We
get that when c ∈ (β5, β6), the minimum of δ(V) is 1

β2
√
β

and the maximum of

∆(V) is 2√
β

√
β2−1
3−β . To determine `m(γp) and Lm(γp) we distinguish two cases:

For c = β5 = 1
1−γ ′

p
, i.e., forA1[γp], we get that `1(γp) = 1/β

2 and L1(γp) =

2√
β

√
β2−1
3−β .

For m > 2, we know that m
1−γ ′

p
lies inside the open interval (βk, βk+1) for

some k ∈ Z. (Suppose this is not true. Then m
1−γ ′

p
= βk for some m, k ∈ Z.

But since 1
1−γ ′

p
= β5, we get thatm = βk−5 ∈ Z, which is a contradiction.)

Altogether we get the following result:

Theorem 5-21. Let γ = γp ≈ −0.877+ 0.745i be a root of X3 + X2 − 1 = 0. Let γ ′
p

be the real Galois conjugate of γp. Then

`1(γp) = |γp|
−4 and L1(γp) = 2

√
1− (γ ′

p)
2

3γ ′
p − 1

. (-)

For m > 2, let k ∈ Z be the greatest integer such that m > (1 − γ ′
p)(

1
γ ′

p
)
k. Then we

have

`m(γp) = |γp|
−k and Lm(γp) = 2

√
1− (γ ′

p)
2

3γ ′
p − 1

|γp|
5−k. (-)

For both γ = γt and γp, we get that `m(γ) is an integer power of |γ|. However,
this property does not hold in general. Still, it seems to be a very “common”
property with only some exception; all pairs (a,b) with a 6 200, such that γ root
of X3 + bX2 + aX− 1 has Property (F ′) and `m(γ) is not an integer power of |γ|
for allm, are listed in Table 5-3.



Chapter 5 Spectra of complex numbers 63

5-9 Comments and open problems

This paper treated a family of cubic complex Pisot units γ— such ones that the
real number 1/γ ′ is positive and satisfies Property (F). We used the concept of
cut-and-project sets to study the properties of the setsAm[γ]. However, there
are other cases where it might be possible to use this concept:

1. We can consider a different perspective of the Tribonacci constant. Let γ be
the complex root of Y3 + Y2 + Y − 1, and put β := 1/γ ′. Both γ and −γ are
complex Pisot units.

It was shown by T. Vávra [Váv14] that the real Tribonacci constant β has the
so-called Property (−F). Shortly speaking, all numbers from I ∩ Z[−1/β] =
I ∩ Z[β], where I := ( −β

β+1 ,
1

β+1), have a finite expansion of the form a1

−β +
a2

β2 + a3

−β3 + · · · with aj ∈ {0, 1}. From this, we can show that Am[−γ] is a
cut-and-project set for arbitrarym > 1. The idea goes along the lines of the
proof of Theorem 5-6. Recently [Krč15, KV15], a full description of cubic
units with Property (−F) has been given.

2. Consider any real Pisot unit β of degree n. Let γ = i
√
β. Then γ is a com-

plex Pisot unit of degree 2n, its Galois conjugates are γ† and ±i
√
β ′ for β ′

conjugates of β.

Clearly Am[γ] = Am[−β] + i
√
βAm[−β]. Therefore the Voronoi tiles of

Am[γ] are rectangles. Values `m(γ) and Lm(γ) can be easily obtained from
the minimal and maximal distances inAm[−β]. In the case n = 2, relations
between Am[−β] and cut-and-project sets in dimensions d = e = 1 were
established in [MPP15], implying that Am[γ] is related to cut-and-project
sets in dimensions d = e = 2.

Let us note that Zaïmi [Zaï04] evaluated `m(γ) for γ = i
√
β,m = bβ2c and

β > 1 the root of Y2 − aY − a, a ∈ N.

3. In the cubic case, we can weaken the hypothesis of Theorem 5-6. For a fixed
m, Property (F) can be replaced by the assumption that all numbers from
Z[β] ∩ [0, 1) have a finite β-representation over the alphabet {0, 1, . . . , m},
where we denote β := 1/γ ′ > 1. Under such an assumption, Am[γ] is a
cut-and-project set.

Akiyama, Rao and Steiner [ARS04] described precisely the set of purely
periodic expansions of points from Z[β]. They have shown that all of them
are of the form •ccc · · · = •cω, where 0 6 c < bβc and (a + b) | c. Since all
numbers from Z[β] ∩ [0, 1) have finite or periodic β-expansions [Sch80] (and
the only periods are therefore the ones mentioned above), it is satisfactory to
findm1 such that the number •(a+b)ω has a finite representation over the
alphabet {0, . . . ,m1}. Under this hypothesis, all numbers from Z[β] ∩ [0, 1)

have a finite representation over the alphabet {0, . . . ,m} for allm > m1b β
a+bc.

We were not able to establish the hypothesis in all cases. We list some cases
in Table 5-4.
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table 5-4
List of pairs of a, b such thatAm[γ] is a cut-and-project set, where γ is the non-real root

of Y3 + bY2 + aY − 1 andm > m1b 1/γ
′

a+b
c.

b a m1 Representation of •(a+b)ω

−2 > 3 2a− 2 •(a−3)(2a−2)(a−3)(0)(1)

−3 > 7 3a− 6 •(a−4)(2a−5)(3a−6)(a−7)(0)(1)

= 6 10 •(2)(7)(10)(10)(0)(0)(1)

= 5 9 •(0)(9)(9)(5)(0)(0)(1)

= 4 7 •(0)(2)(6)(7)(0)3(1)

−4 > 8 8a− 11 •(a−5)(2a−11)(8a−11)(4a−31)(a−8)(0)(1)

= 7 39 •(0)(16)(39)(27)(0)3(1)

= 6 47 •(0)(3)(44)(47)(0)4(1)

4. Quartic Pisot units γ with |γ| ∈ (1, 2) are treated by Dombek, Masáková
and Ziegler in [DMZ15]. The authors study the question of whether every
element of the ring Z[γ] of integers ofQ(γ) can be written as a sum of distinct
units. If the only units on the unit circle are ±1, then the question can be
interpreted as Property (F) over the alphabet {−1, 0, 1}. Therefore the concept
of cut-and-project sets can be applied to these quartic bases and symmetric
alphabets as well.

Let us conclude with several open questions:

Problem 5a. Is it true that all real cubic Pisot units βwith a complex conjugate
satisfy the following: There existsm ∈ N such that all numbers from Z[β]∩ [0, 1)
have a finite β-representation over the alphabet {0, . . . ,m}?

Problem 5b. Answer “yes” or “no”: For all cubic units γ that satisfy Property (F ′)
and for allm > |γ|2 − 1 we have that `m(γ) is the modulus of a unit in Z[γ].

Problem 5c. Answer “yes” or “no”: For all cubic units γ that satisfy Property (F ′)
but for roots of X3 + bX2 + aX − 1 with (a, b) ∈ {(2,−1), (2, 3), (6, 5), (12, 7)} ∪
{ (k2, 2k) : k ∈ N, k > 1 }, we have that `m(γ) is an integer power of |γ| for allm.

Problem 5d. Which Pisot numbers β satisfy that there exists m ∈ N such that
all x ∈ Z[β] have a finite β-representation over the alphabet {0, 1, . . . ,m}?

Problem 5e. It is well known that, in the real case,Am[β] is a relatively dense
set in R+ if and only ifm > β− 1. Can we state analogous result in the complex
case? In particular, isAm[γ] relatively dense set in C for allm > |γ|2 − 1?

Can the complex modification of the Feng’s result [Fen15] be proved, namely
that `m(γ) = 0 if and only ifm > |γ|2 − 1 and γ is not a complex Pisot number?
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Index of Notation

Symbol Meaning

Am The alphabet {0, 1, . . . ,m}

A[β] Spectrum of β with digits inA
Br(x) Ball of diameter r centered at x
C Complex numbers
xf Embedding of x ∈ Q(β) in finite places of Q(β) that divide β
h(x) Hensel β-expansion of x ∈ Z[β]
H-lim Hausdorff limit
i Imaginary unit
Im z Imaginary part of complex number z
Kf Completion of field K w.r.t. finite places that divide β
`m(γ) Minimal distance between points of spectrumAm[β]

Lm(γ) Maximal diameter of a ball that does not meetAm[β]

L∗m(γ) Maximal distance between neighbours inAm[β]

N(x) Norm of algebraic integer x
N Natural numbers, including 0
OK Ring of integers of field K
Pβ Minimal polynomial of algebraic number β
Prefnw Prefix of word w of length n
Q Rational numbers
Q(β) Field extension of Q by β
Q(x) Rauzy fractal, Q(x) = H-limΨ(x− βnT−n(x))

Qf(x) Rauzy fractal, Qf(x) = H-limΨf(x− β
nT−n(x))

R Real numbers
R(x) Rauzy fractal, R(x) = H-limΨ(βnT−n(x)) for x ∈ Z[β]
Re z Real part of complex number z
TG, TS, TB Greedy, symmetric and balanced β-transformations
T Natural extension mapping
V(x) Voronoi tile of x
X Natural extension domain
Z Integers
Z[X] Ring of polynomials with integer coefficients
Z[β] Ring of integer combinations of non-negative powers of β
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Symbol Meaning

γt Complex Tribonacci constant, the root of X3 = −X2 − X+ 1 such
that Imγt > 0

γp Complex plastic constant, the root of X3 = −X2 + 1 such that
Imγp > 0

δ(V) Distance between center of Voronoi tileV and its nearest neigh-
bour

∆(V) Distance between center ofV and its furthest vertex
∆∗(V) Distance between center ofV and its furthest neighbour
ε Empty word
Λβ(Ω) Model set associated to Pisot number β
Πρ(x) Patch (of model set) of size ρ around point x
ϕg Golden ratio, the positive root of X2 = X+ 1

ϕp Minimal Pisot number (or plastic constant), the real root of X3 =

X+ 1

ϕt Tribonacci constant, the real root of X3 = X2 + X+ 1

ψ(j) jth Galois isomorphism of Q(β)
Ψ Direct product of non-identity Galois isomorphisms of Q(β)
Ψ0 Direct product of all Galois isomorphisms of Q(β)
Ψf Direct product Ψf(x) = (Ψ(x), xf)

Ψ0,f Direct product Ψ0,f(x) = (Ψ0(x), xf)

wω Periodic word produced by infinite repetition of w, www · · ·

z† Complex conjugate of z
#S Number of elements of set S, #S ∈ N ∪ {∞}

〈·; ·〉 Polynomial representation of a word, 〈u0u1 · · · ;X〉 =
∑

k ukX
k

a ⊥ b Relation of being co-prime, i.e., gcd(a, b) = 1
w∗ Kleene star operation, the language w∗ = {ε,w,ww,w3, · · · }
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