MULTIPLE TILINGS ASSOCIATED TO *d*-BONACCI BETA-EXPANSIONS

TOMÁŠ HEJDA

ABSTRACT. It is a well-known fact that when $\beta > 1$ is a *d*-Bonacci number, i.e., $\beta^d = \beta^{d-1} + \beta^{d-2} + \cdots + \beta + 1$ for some $d \ge 2$, then the Rauzy fractals arising in the greedy β -expansions tile the space \mathbb{R}^{d-1} . However, it was recently shown that the Rauzy fractals arising in the symmetric Tribonacci expansions form a multiple tiling with covering degree 2, i.e., almost every point of \mathbb{R}^2 lies in exactly 2 tiles. We show that the covering degree for symmetric *d*-Bonacci expansions is equal to d-1 for any *d*. We moreover characterize which tiles lie in the same layer of the multiple tiling.

1. INTRODUCTION

Tilings arising from β -expansions were first studied in the 1980s by A. Rauzy [Rau82] and W. Thurston [Thu89]. They consider the greedy β -expansions that are associated to the transformation $T_{\mathsf{G}} \colon x \mapsto \beta x - \lfloor \beta x \rfloor$. S. Akiyama [Aki02] showed that the collection of β -tiles forms a tiling if and only if β satisfies the so-called *weak finiteness property* (W). It is conjectured that all Pisot numbers satisfy (W) for the greedy expansions, this is one of the versions of the famous unresolved *Pisot conjecture* [Hol96, ARS04].

If we drop the "greedy" hypothesis, things are getting more interesting. C. Kalle and W. Steiner [KS12] showed that the symmetric β -expansions for two particular cubic Pisot numbers β induce a double tiling — i.e., a multiple tiling such that almost every point of the tiled space lies in exactly two tiles. More generally, they proved that every "well-behaving" β -transformation with a Pisot number β induces a multiple tiling. Multiple tilings in various related settings were as well considered by S. Ito and H. Rao [IR06].

In this paper we concentrate on the symmetric β -expansions associated to the transformation $T_{\mathsf{S}}: x \mapsto \beta x - \lfloor \beta x - \frac{1}{2} \rfloor$; we define T_{S} on two intervals $\left[-\frac{1}{2}, \frac{\beta}{2} - 1\right) \cup \left[1 - \frac{\beta}{2}, \frac{1}{2}\right]$ that form the support of its invariant measure, cf. Lemma 1. This transformation was studied before e.g. by S. Akiyama and K. Scheicher in the context of shift radix systems [AS07]. We show the following theorem about the multiple tiling:

Theorem 1. Let $d \in \mathbb{N}$, $d \geq 2$, and let $\beta \in (1, 2)$ be the *d*-Bonacci number, i.e., the Pisot number satisfying $\beta^d = \beta^{d-1} + \cdots + \beta + 1$. Then the symmetric β -expansions induce a multiple tiling of \mathbb{R}^{d-1} with covering degree equal to d-1.

(Note that for any particular β and any particular transformation, the degree of the multiple tiling can be computed from the intersection [or boundary] graph, eventually multi-graph, as defined for instance by A. Siegel and J. Thuswaldner [ST09]; however, such an algorithmic approach is not usable for an infinite number of cases.)

We also characterize the tiles that form the distinct layers of the multiple tiling:

²⁰¹⁰ Mathematics Subject Classification. 11A63 52C23 (11R06 28A80 37B10).

Key words and phrases. beta-expansions, Rauzy fractals, tiling, multiple tiling.

Theorem 2. Let $d \in \mathbb{N}$, $d \geq 3$, and let $\beta \in (1,2)$ be the d-Bonacci number. Let $h \in \{1, 2, \dots, d-1\}$. Then the collection of tiles $\{\mathcal{R}(x) : x \in \mathcal{L}_h\}$, where

(1.1)
$$\mathcal{L}_h \coloneqq \left(\llbracket h \rrbracket \cap \left[1 - \frac{\beta}{2}, \frac{1}{2} \right] \right) \cup \left(\llbracket h - d \rrbracket \cap \left[-\frac{1}{2}, \frac{\beta}{2} - 1 \right] \right),$$

forms a tiling of \mathbb{R}^{d-1} , that is, it is a layer of the multiple tiling guaranteed by Theorem 1. Here we denote $[\![j]\!] := j + (\beta - 1)\mathbb{Z}[\beta]$.

The two results rely substantially on the knowledge of the purely periodic integer points of T_S :

Theorem 3. Let $d \in \mathbb{N}$, $d \geq 2$, and let $\beta \in (1, 2)$ be the *d*-Bonacci number. Let \mathcal{P} denote the set of non-zero $x \in \mathbb{Z}[\beta]$ such that $T_{\mathsf{S}}^p x = x$ for some $p \geq 1$. Then

$$\mathcal{P} \cup \{0\} = \left\{ \pm_{\bullet} 0 p_2 p_3 \cdots p_d : p_i \in \{0, 1\} \right\} = \left\{ \pm \sum_{i=2}^{a} p_i \beta^{-i} : p_i \in \{0, 1\} \right\}.$$

(We exclude 0 from \mathcal{P} as it does not lie in the support of the invariant measure of $T_{\rm S}$.)

The paper is organized as follows. In the following section we define all the necessary notions. The theorems are proved in Section 3. We conclude by a pair of related open questions in Section 4.

2. Preliminaries

2.1. **Pisot numbers.** An algebraic integer $\beta > 1$ is a *Pisot number* if all its Galois conjugates, i.e., the other roots of its minimal polynomial, lie inside of the unit complex circle. As usual, $\mathbb{Z}[\beta]$ denotes the ring of integer combinations of powers of β , and $\mathbb{Q}(\beta)$ denotes the field generated by the rational numbers and by β .

Suppose that β is of degree d and has 2e < d complex Galois conjugates $\beta_{(1)}, \ldots, \beta_{(e)}, \beta_{(1)}^{\star}, \ldots, \beta_{(e)}^{\star}$ and d - 2e - 1 real ones $\beta_{(e+1)}, \ldots, \beta_{(d-e-1)}$. Denote $\sigma_{(j)} \colon \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_{(j)})$ the corresponding Galois isomorphisms. Then we put

$$\Phi \colon \mathbb{Q}(\beta) \to \prod_{j=1}^{d-e-1} \mathbb{Q}(\beta_{(j)}), \quad x \mapsto \big(\sigma_{(1)}(x), \dots, \sigma_{(d-e-1)}(x)\big).$$

Since $\prod_{j=1}^{d-e-1} \mathbb{Q}(\beta_{(j)}) \subset \mathbb{C}^e \times \mathbb{R}^{d-2e-1} \simeq \mathbb{R}^{d-1}$, we consider that $\Phi \colon \mathbb{Q}(\beta) \to \mathbb{R}^{d-1}$. We have the closure properties $\overline{\Phi(\mathbb{Z}[\beta])} = \overline{\Phi(\mathbb{Q}(\beta))} = \mathbb{R}^{d-1}$.

In this paper, we focus on *d*-Bonacci numbers. For $d \ge 2$ a *d*-Bonacci number is the Pisot root of the polynomial $\beta^d = \beta^{d-1} + \cdots + \beta + 1$.

We say that two numbers $x, y \in \mathbb{Z}[\beta]$ are congruent modulo $\beta - 1$ if $y - x \in (\beta - 1)\mathbb{Z}[\beta]$. By $\llbracket h \rrbracket$, for $h \in \mathbb{Z}[\beta]$, we denote the congruence class modulo $\beta - 1$ that contains h, i.e., $\llbracket h \rrbracket := h + (\beta - 1)\mathbb{Z}[\beta]$. If β is a *d*-Bonacci number, then the norm of $\beta - 1$ is $N(\beta - 1) = -(d - 1)$. Therefore there are exactly d - 1 distinct classes modulo $\beta - 1$ and we can take numbers $h \in \{1, 2, \ldots, d - 1\}$ as their representatives, i.e.,

$$\mathbb{Z}[\beta] = \bigcup_{h=1}^{d-1} \llbracket h \rrbracket = \bigcup_{h=1}^{d-1} h + (\beta - 1)\mathbb{Z}[\beta].$$

2.2. β -expansions. We fix $\beta \in (1,2)$. Let $X \subset \mathbb{R}$ be union of intervals and $D: X \mapsto \mathbb{Z}$ be a piecewise constant function (*digit function*) such that $\beta x - D(x) \in X$ for all $x \in X$. Then the map $T: X \to X, x \mapsto \beta x - D(x)$ is a β -transformation. The β -expansion of $x \in X$ is then the (right-infinite) sequence $x_1 x_2 x_3 \cdots \in (D(X))^{\omega}$, where $x_i = DT^{i-1}x$. We say that $x_1 x_2 x_3 \cdots \in \mathbb{Z}^{\omega}$ is T-admissible if it is the expansion of some $x \in X$.

We define two particular β -transformations:

- (1) Let $X_{\mathsf{S}} \coloneqq [-\frac{1}{2}, \frac{\beta}{2} 1) \cup [1 \frac{\beta}{2}, \frac{1}{2})$ and $D_{\mathsf{S}}(x) \coloneqq \lfloor \beta x \frac{1}{2} \rfloor \in \{\overline{1}, 0, 1\}$ (we denote $\overline{a} \coloneqq -a$ for convenience). This defines the symmetric β -expansions. We denote T_{S} the transformation and $(x)_{\mathsf{S}} \in \{\overline{1}, 0, 1\}^{\omega}$ the expansion of $x \in X_{\mathsf{S}}$.
- (2) Let $X_{\mathsf{B}} \coloneqq \left[\frac{2-\beta}{2\beta-2}, \frac{\beta}{2\beta-2}\right)$ and $D_{\mathsf{B}}(x) \coloneqq 1$ if $x \ge \frac{1}{2\beta-2}$ and $D_{\mathsf{B}}(x) \coloneqq 0$ otherwise. This defines the *balanced* β -expansions. We denote T_{B} and $(x)_{\mathsf{B}} \in \{0, 1\}^{\omega}$ accordingly.

Both T_{S} and T_{B} are plotted in Figure 1 for the Tribonacci number.

Besides expansions, we consider arbitrary representations. Any bounded sequence of integers $x_{-N} \cdots x_{-1} x_{0} x_1 x_2 \cdots$ is a *representation* of $x = \sum_{i>-N} x_i \beta^{-i} \in \mathbb{R}$.

A factor of a sequence $x_1x_2x_3\cdots$ is any finite word $x_kx_{k+1}\cdots x_{l-1}$ with $l \ge k \ge -N$. A sequence $x_1x_2\cdots$ is periodic if $(\exists k, p \in \mathbb{N}, p \ge 1)(\forall i > k)(x_{i+p} = x_i)$. It is purely periodic if k = 0.

2.3. Rauzy fractals. We consider the symmetric β -transformations for Pisot units β . The symmetric β -transformation T_{S} possesses a unique invariant measure absolutely continuous w.r.t. the Lebesgue measure. For any $x \in \mathbb{Z}[\beta] \cap X_{\mathsf{S}}$, we define the β -tile (or *Rauzy fractal*) as the Hausdorff limit

$$\mathcal{R}(x) \coloneqq \lim_{n \to \infty} \Phi(\beta^n T^{-n}(x)) \subset \mathbb{R}^{d-1}.$$

Note that $T^{-n}(-x) = -T^{-n}(x)$ for all $x \in \mathbb{Z}[\beta] \cap X_{\mathsf{S}}$ and all *n*, therefore $\mathcal{R}(-x) = -\mathcal{R}(x)$.

The Rauzy fractals induce a multiple tiling, as was shown in Theorem 4.10 of [KS12]. We recall that the family of tiles $\mathcal{T} \coloneqq {\mathcal{R}(x)}_{x \in \mathbb{Z}[\beta] \cap X_{\mathsf{S}}}$ is a *multiple tiling* if the following is satisfied:

- (1) The tiles $\mathcal{R}(x)$ take only finitely many shapes (i.e., are only finitely many modulo translation in \mathbb{R}^{d-1}).
- (2) The family \mathcal{T} is locally finite, i.e., for every bounded set $U \subset \mathbb{R}^{d-1}$, only finitely many tiles from \mathcal{T} intersect U.
- (3) The family \mathcal{T} covers \mathbb{R}^{d-1} , i.e., for every $y \in \mathbb{R}^{d-1}$ there exists $\mathcal{R}(x) \in \mathcal{T}$ such that $y \in \mathcal{R}(x)$.
- (4) Every tile $\mathcal{R}(x)$ is a closure of its interior.
- (5) There exists an integer $m \ge 1$ such that almost every point in \mathbb{R}^{d-1} lies in exactly m tiles from \mathcal{T} ; this m is called the *covering degree* of \mathcal{T} .

If m = 1, we say that \mathcal{T} is a *tiling*. Every multiple tiling with covering degree $m \ge 2$ is a union of m tilings; we call these tilings *layers* of the multiple tiling.

3. Proofs

From now on, we suppose that $d \geq 3$ is an integer and $\beta > 1$ is the *d*-Bonacci number, i.e., the root of $\beta^d = \beta^{d-1} + \beta^{d-2} + \cdots + \beta + 1$. In Lemma 1 we show that the support of the invariant measure of T_{S} is the whole X_{S} ; from this, we conclude that $\{\mathcal{R}(x)\}_{x\in\mathbb{Z}[\beta]\cap X_{\mathsf{S}}}$ is a multiple tiling [KS12, Theorem 4.10]. In Lemma 2 we establish a strong relation between the symmetric and the balanced expansion. This allows us to use arithmetic results on balanced expansions in Lemmas 3 and 4 to determine the degree of the multiple

FIGURE 1. Transformations T_{S} (left) and T_{B} (right) for d = 3.

FIGURE 2. The automata accepting the T_{s} -admissible sequences (top) and the T_{B} -admissible ones (bottom).

tiling, which is done in Lemmas 5, 6 and 7. The proof of Theorem 3 is given after Lemma 4, the proofs of Theorems 1 and 2 are at the very end of the section.

Lemma 1. The support of the invariant measure of T_{S} is the whole domain $X_{\mathsf{S}} = [-\frac{1}{2}, \frac{\beta}{2} - 1) \cup [1 - \frac{\beta}{2}, \frac{1}{2}].$

Proof. Denote $l \coloneqq -\frac{1}{2}$. Put $Y_d \coloneqq [T_{\mathsf{S}}^d l, -l)$ and $Y_k \coloneqq [T_{\mathsf{S}}^k l, T_{\mathsf{S}}^{k+1}l)$ for $1 \le k \le d-1$. Similarly, put $Y_{-d} \coloneqq [l, -T_{\mathsf{S}}^d l)$ and $Y_{-k} \coloneqq [-T_{\mathsf{S}}^{k+1}l, -T_{\mathsf{S}}^k l)$ for $1 \le k \le d-1$, see Figure 1. Define a measure μ by

$$d\mu(x) = f(x) dx \coloneqq \left(\frac{1}{\beta} + \frac{1}{\beta^2} + \dots + \frac{1}{\beta^k}\right) dx \quad \text{for } x \in Y_{\pm k}, \ 1 \le k \le d.$$

Then we verify that for any $x \in X_S$, we have

$$\mu\big([x,x+\mathrm{d}x)\big) = f(x)\,\mathrm{d}x = \frac{1}{\beta}\,\mathrm{d}x\sum_{\substack{y\in X_{\mathsf{S}}\\T_{\mathsf{S}}y=x}}f(y) = \mu\big(T_{\mathsf{S}}^{-1}[x,x+\mathrm{d}x)\big),$$

because

(3.1)
$$T_{\mathsf{S}}Y_{\pm k} = \begin{cases} Y_{\pm 1} \cup Y_{\pm 2} \cup \dots \cup Y_{\pm d} & \text{if } k = d; \\ Y_{\pm (k+1)} & \text{otherwise} \end{cases}$$

Therefore μ is the invariant measure of T_{S} .

Lemma 2. Let $x \in \mathbb{Z}[\beta] \cap X_{S}$. Define

$$\psi \colon X_{\mathsf{S}} \to X_{\mathsf{B}}, \quad x \mapsto \begin{cases} \frac{1}{\beta - 1} x & \text{if } x \in [1 - \frac{\beta}{2}, \frac{1}{2});\\ \frac{1}{\beta - 1} (x + 1) & \text{if } x \in [-\frac{1}{2}, \frac{\beta}{2} - 1). \end{cases}$$

Suppose that $(\psi x)_{\mathsf{B}} = t_1 t_2 t_3 \cdots$. Then $(x)_{\mathsf{S}} = (t_2 - t_1)(t_3 - t_2)(t_4 - t_3) \cdots$. Moreover, $(x)_{\mathsf{S}}$ is purely periodic if and only if $(\psi x)_{\mathsf{B}}$ is, and the length of the periods is the same.

Proof. The transformations T_{S} and T_{B} are conjugated via ψ , i.e., the following diagram commutes:

$$\begin{array}{ccc} X_{\mathsf{S}} & \xrightarrow{T_{\mathsf{S}}} & X_{\mathsf{S}} \\ \cong & \downarrow \psi & \cong & \downarrow \psi \\ X_{\mathsf{B}} & \xrightarrow{T_{\mathsf{B}}} & X_{\mathsf{B}} \end{array}$$

(see Figure 1). If we denote $U_{\pm k} := \psi Y_{\pm k}$, we get that (3.1) is true for the sets U_k as well. We depict the acceptance automaton for balanced expansions in Figure 2 bottom. If an infinite path in the bottom automaton is labelled by $t_1 t_2 t_3 \cdots$, then the corresponding path in the top automaton is labelled by $x_1 x_2 x_3 \cdots$ with $x_i = t_{i+1} - t_i$.

The periodicity is preserved because $T_{\mathsf{S}}^p x = x \Longleftrightarrow T_{\mathsf{B}}^p \psi x = \psi x$.

Lemma 3. Suppose that the balanced expansion of $x \in \mathbb{Q}(\beta) \cap X_{\mathsf{B}}$ has the form

$$(x)_{\mathsf{B}} = x_1 x_2 x_3 \cdots x_n (x_{n+1} \cdots x_{n+d})^{\omega}.$$

Then for any $z \in \mathbb{Z}[\beta]$ such that $x + z \in X_{\mathsf{B}}$, the balanced expansion of x + z has the form

$$(x+z)_{\mathsf{B}} = y_1 y_2 y_3 \cdots y_m (y_{m+1} \cdots y_{m+d})^{\omega},$$

where, moreover, $x_{n+1} + \dots + x_{n+d} = y_{m+1} + \dots + y_{m+d}$.

Proof. Clearly it is enough to consider the simplest case $z = \pm \beta^{-k}$ for some $k \ge 2$, since any $z \in \mathbb{Z}[\beta]$ is a finite sum of powers of β . Then $x + z = \cdot \tilde{x}_1 \tilde{x}_2 \tilde{x}_3 \cdots$, where $\tilde{x}_i = x_i$ for $i \ne k$, and $\tilde{x}_k = x_k \pm 1$.

Denote

$$s_i \coloneqq \underbrace{\underbrace{y_{i+1}y_{i+2}y_{i+3}\cdots}_{\in [0,1)} - \underbrace{\tilde{x}_{i+1}\tilde{x}_{i+2}\tilde{x}_{i+3}\cdots}_{\in [-\frac{1}{\beta}, 1+\frac{1}{\beta})},$$

then $s_i \in (-1 - \frac{1}{\beta}, 1 + \frac{1}{\beta})$, and we have that $s_{i+1} = \beta s_i + (\tilde{x}_i - y_i)$; we will denote this relation by an arrow $s_i \xrightarrow{\tilde{x}_i - y_i} s_{i+1}$.

Consider $i \leq k - 1$. Then the only possible values of s_i and possible arrows are for $i \leq k - 2$:

$$0 \xrightarrow{0} 0, \qquad 0 \xrightarrow{\pm 1} \pm {}_{\bullet} 1^{d}, \qquad \mp {}_{\bullet} 1^{n} \xrightarrow{\pm 1} \mp {}_{\bullet} 1^{n-1} \quad (n \neq 0).$$

For i = k - 1, we have additionally:

$$\mp_{\bullet} 1^q \xrightarrow{\pm 2} \pm_{\bullet} 0^{q-1} 1^{d-q+1} \quad (n \neq 0)$$

For $i \ge k$, the arrows change completely since $\tilde{x}_{i+1}\tilde{x}_{i+2}\cdots \in [0,1)$, whence $s_i \in (-1,1)$. Also, the new states $\pm 0^q 1^r$ have to be considered. We get:

$$\begin{array}{ll} \pm \mathbf{0}^{q} \mathbf{1}^{r} \xrightarrow{0} \pm \mathbf{0}^{q-1} \mathbf{1}^{r} & (q \neq 0), \\ \mp \mathbf{0}^{q} \mathbf{1}^{r} \xrightarrow{\pm 1} \pm \mathbf{0}^{q-1} \mathbf{0}^{r} \mathbf{1}^{d-q-r+1} & (q, r \neq 0) \\ \mp \mathbf{0}^{q} \mathbf{0}^{r} \mathbf{1}^{t} \xrightarrow{\pm 1} \mp \mathbf{0}^{q-1} \mathbf{0}^{r} \mathbf{1}^{t} & (q \neq 0). \end{array}$$

FIGURE 3. The "automaton" built in the proof of Lemma 3, for d = 3. The solid arrows represent arrows labelled by 0 or ± 1 , the dashed arrows by ± 2 (these are available only for i = k - 1). The dotted arrows are available only for $i \leq k - 1$ since they lead to $s_{i+1} = \pm 1$.

Since every d-tuple $\{s_i, s_{i+1}, \ldots, s_{i+d-1}\}$ contains a positive element, we can find $i \ge n$ such that $s_i = \mathbf{0}^{q} \mathbf{1}^r \ge 0$ and $\tilde{x}_{i+1} \tilde{x}_{i+2} \tilde{x}_{i+3} \cdots$ is purely periodic, i.e., $\tilde{x}_{i+1} \tilde{x}_{i+2} \tilde{x}_{i+3} \cdots = (p_1 p_2 \ldots p_d)^{\omega}$ for some $p_j \in \{0, 1\}$.

There are two cases. First, suppose $p_{q+1}p_{q+2}\cdots p_{q+r} = 0^r$. Then

$$y_{i+1}y_{i+2}y_{i+3}\cdots = p_1p_2\dots p_q 1^r p_{q+r+1}\cdots p_d (p_1\cdots p_d)^{\omega}.$$

Second, suppose $p_{q+1}p_{q+2}\cdots p_{q+r} \neq 0^r$. Then we can find unique t, u such that

$$p_t p_{t+1} \cdots p_q = 01^{q-t}$$
 and $p_{q+u} p_{q+u+1} \cdots p_{q+r} = 10^{r-u}$

(if we had $p_1p_2\cdots p_q = 1^q$, it would be a contradiction with $y_{i+1}y_{i+2}\cdots = s_i + \tilde{x}_{i+1}\tilde{x}_{i+2}\cdots < 1$). Then the new pre-period and period are

(3.2)
$$\begin{aligned} y_{i+1}y_{i+2}\cdots y_{i+d} &= p_1\cdots p_{t-1}10^{q-t}p_{q+1}\cdots p_{q+u-1}01^{r-u}p_{q+r+1}\cdots p_d,\\ y_{i+d+1}y_{i+d+2}\cdots &= \left(p_1\cdots p_{t-1}1p_{t+1}\cdots p_{q+u-1}0p_{t+u+1}\cdots p_d\right)^{\omega},\end{aligned}$$

because this value of the sequence $y_{i+1}y_{i+2}\cdots$ is T_{B} -admissible satisfies that

and it is T_{B} -admissible. In either case, the sum of the elements of the period is preserved.

Example 1. We apply the lemma to an example d = 3, $(x)_{\mathsf{B}} = 0111011(010)^{\omega}$ and $z = \beta^{-7}$. Then $\tilde{x}_1 \tilde{x}_2 \cdots = 0111012(010)^{\omega}$ and $y_1 y_2 \cdots = 1000100101(100)^{\omega}$. The computation is as follows:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	•••
\tilde{x}_i		0	1	1	1	0	1	2	0	1	0	0	1	0	
y_i		1	0	0	0	1	0	0	1	0	1	1	0	0	•••
s_i	•0	• <u>1</u> 11	. 11	${\scriptstyle\bullet}\bar{1}$	$_{\bullet}0$	• <u>1</u> <u>1</u> <u>1</u>	. 11	.011	$00\overline{1}$. 101	$\bullet 01$	•0 <u>1</u> <u>1</u>	$\bullet 001$. 01	•••

(this computation follows the arrows in Figure 3). For i = 7, we have that $s_7 = .011 \ge 0$ and $x_8 x_9 \cdots = (100)^{\omega}$ is purely periodic. Therefore we have q = 1 and r = 2 and $p_1p_2p_3 = 010$. We have $p_{q+1} \cdots p_{q+r} = 10 \neq 0^r$; we get t = 1 and u = 1. From (3.2) we confirm that $y_8 y_9 \cdots = 101(100)^{\omega}$.

Lemma 4. Let $h \in \{1, 2, \ldots, d-1\}$. Then the set $\llbracket h \rrbracket \cap X_S$ contains exactly such $x \in \mathbb{Q}(\beta) \cap X_{\mathsf{S}}$ that the balanced expansion of $\frac{|x|}{\beta-1}$ has the form

(3.3)
$$\left(\frac{|x|}{\beta-1}\right)_{\mathsf{B}} = x_1 x_2 \cdots x_n (x_{n+1} x_{n+2} \cdots x_{n+d})^{\omega}$$
with $x_{n+1} + x_{n+2} + \cdots + x_{n+d} = \begin{cases} h & \text{if } x > 0, \\ d-1 & \text{if } x < 0 \text{ and } h = d-1, \\ d-1-h & \text{if } x < 0 \text{ and } 1 \le h \le d-2. \end{cases}$

Proof. We start by proving that whatever $x \in \llbracket h \rrbracket \cap X_{\mathsf{S}}$ we take, it satisfies (3.3). As $1^{j} \in [j]$ for all $j \in \mathbb{N}$, there exists $y \in \mathbb{Z}[\beta]$ such that

$$x = \begin{cases} \frac{y}{\beta - 1} + \mathbf{1}^h & \text{if } x > 0, \\ -\left(\frac{y}{\beta - 1} + \mathbf{1}^{d-1}\right) & \text{if } x < 0 \text{ and } h = d - 1, \\ -\left(\frac{y}{\beta - 1} + \mathbf{1}^{d-1-h}\right) & \text{if } x < 0 \text{ and } 1 \le h \le d - 2. \end{cases}$$

Since $(\frac{1}{\beta-1} \times {}_{\bullet} 1^j)_{\mathsf{B}} = (1^j 0^{d-j})^{\omega}$, the result follows from Lemma 3.

We finish by proving other direction. Suppose x satisfies (3.3). Without the loss of generality, suppose that the length of the pre-period is a multiple of d, and put $y \coloneqq (\beta - 1) \times (x_{n+1}x_{n+2}\cdots x_{n+d})^{\omega} = x_{n+1}x_{n+2}\cdots x_{n+d} \in \llbracket h \rrbracket$. Then

$$\frac{x-y}{\beta-1} = \cdot (x_1 - x_{n+1}) \cdots (x_d - x_{n+d}) (x_{d+1} - x_{n+1}) \cdots (x_n - x_{n+d}) 0^{\omega} \in \mathbb{Z}[\beta].$$

re $x \in \llbracket u \rrbracket = \llbracket h \rrbracket.$

Therefore $x \in \llbracket y \rrbracket = \llbracket h \rrbracket$.

Proof of Theorem 3. Let $x \in \mathbb{Z}[\beta] \cap X_{\mathsf{S}}$. By Lemmas 2 and 4, the symmetric expansion $(|x|)_{S}$ is periodic with period d. Suppose it is purely periodic. Then by Lemma 2, $\left(\frac{|x|}{\beta-1}\right)_{\mathsf{B}}$ is also purely periodic; we denote it $\left(\frac{|x|}{\beta-1}\right)_{\mathsf{B}} = (p_1 p_2 \cdots p_d)^{\omega}$. Therefore, since $\frac{1}{\beta-1} = {}_{\bullet}(0^{d-1}1)^{\omega}$, we have that $|x| = {}_{\bullet}p_1p_2\cdots p_d$. The fact that $p_1 = 0$ follows from $|x| \leq \frac{1}{2} < \frac{1}{\beta}.$

On the other hand, any $x = \pm 0 p_2 \cdots p_d \neq 0$ satisfies that $x \in X_{\mathsf{S}} \cap \mathbb{Z}[\beta]$ and $\left(\frac{|x|}{\beta-1}\right)_{\mathsf{B}} = (0p_2 \cdots p_d)^{\omega}$ is purely periodic, therefore $x \in \mathcal{P}$.

Lemma 5. There exists a number $z \in \mathbb{Z}[\beta]$ such that $\Phi(z)$ lies exactly in d-1 tiles.

Before we prove this lemma, let us recall a helpful result by C. Kalle and W. Steiner:

Lemma 6. [KS12, Proposition 4.15] Suppose $z \in \mathbb{Z}[\beta] \cap [0, \infty)$. Let $k \in \mathbb{N}$ be an integer such that for all $y \in \mathcal{P}$, the expansions $(y)_{\mathsf{S}}$ and $(y + \beta^{-k}z)_{\mathsf{S}}$ have a common prefix at least as long as the period of y.

Then $\Phi(z)$ lies in a tile $\mathcal{R}(x)$ for $x \in \mathbb{Z}[\beta] \cap X_{\mathsf{S}}$ if and only if

$$x = T^k_{\mathsf{S}}(y + \beta^{-k}z) \quad \text{for some } y \in \mathcal{P}$$

Proof of Lemma 5. We put $z := (0^{d-1}1)^{d-1} \in \mathbb{Z}[\beta] \cap [0,\infty)$. Let us fix $y = \pm 0y_2y_3 \cdots y_d$ $\in \mathcal{P}$. Then we can write y as $y = (-p_1) \cdot p_1 p_2 p_3 \cdots p_d$, where

$$p_i = y_i$$
 if $y \ge 0$; $p_i = 1 - y_i$ if $y < 0$.

Note that $h := p_1 + p_2 + \dots + p_d \in \{1, \dots, d-1\}$. Let

$$t := \psi(y + \beta^{-d^2} z) = \frac{1}{\beta - 1} \times {}_{\bullet} p_1 p_2 \cdots p_d \underbrace{(0^{d-1} 1)(0^{d-1} 1) \cdots (0^{d-1} 1)}_{d-1 \text{ times}}.$$

Defining $f(x) \coloneqq \beta^d x + \frac{1}{\beta-1}$, we get that

$$\beta^{d^2}t = f^{d-1}\Big(\frac{1}{\beta-1} \times p_1 p_2 \cdots p_{d\bullet}\Big) = f^{d-1}\Big(p_1 \cdots p_{d\bullet}(p_1 \cdots p_d)^{\omega}\Big),$$

where $f^{d-1}(x)$ denotes the (d-1)th iteration $f(f(\cdots f(x) \cdots))$.

We have the following relations:

$$f(x_{-N}\cdots x_{0\bullet}(x_{1}\cdots x_{n-1}01^{d-n})^{\omega}) = x_{-N}\cdots x_{n-1}10^{d-n} \cdot (x_{1}\cdots x_{n-1}1^{d-n+1})^{\omega}$$

(if $x_{1}\cdots x_{n-1} \neq 1^{n-1}$);
3.4) $f(x_{-N}\cdots x_{0\bullet}(1^{n-1}01^{d-n})^{\omega}) = x_{-N}\cdots x_{0}1^{n}0^{d-n-1}1_{\bullet}(0^{d-1}1)^{\omega}$
(if $1 \leq n \leq d-1$);

$$f(1^{d-1}0_{\bullet}(1^{d-1}0)^{\omega}) = 1^{d}0^{d-1}1_{\bullet}(0^{d-1}1)^{\omega}.$$

It follows that

$$f^{d-h}(p_1\cdots p_{d\bullet}(p_1\cdots p_d)^{\omega}) = (\text{something})_{\bullet}(0^{d-1}1)^{\omega},$$
$$\beta^{d^2}t = f^{d-1}(p_1\cdots p_{d\bullet}(p_1\cdots p_d)^{\omega}) = t_1t_2\cdots t_{d^2\bullet}(0^{d-h}1^h)^{\omega}.$$

Since the right-hand sides of (3.4) contain neither 0^{d+1} nor 1^{d+1} as a factor, this sequence is T_{B} -admissible, therefore $(t)_{\mathsf{B}} = (\psi(y + \beta^{-d^2}z))_{\mathsf{B}} = t_1 t_2 \cdots t_{d^2} (0^{d-h}1^h)^{\omega}$.

By Lemma 6, $\Phi(z)$ lies in the tile $\mathcal{R}(x)$ for

$$x = T_{\mathsf{S}}^{d^2}(y + \beta^{-d^2}z) = \psi^{-1}T_{\mathsf{B}}^{d^2}(t).$$

Since $(T_{\mathsf{B}}^{d^2}t)_{\mathsf{B}} = (0^{d-h}1^h)^{\omega}$, Lemma 2 gives that $(x)_{\mathsf{S}} = (0^{d-h-1}10^{h-1}\overline{1})^{\omega}$. Finally, considering all $y \in \mathcal{P}$ at once, we conclude that $\Phi(z)$ lies exactly in tiles $\mathcal{R}((0^{d-h-1}10^{h-1}\overline{1})^{\omega})$ for $h \in \{1, 2, \dots, d-1\}$. That makes d-1 tiles.

Example 2. For d = 3, there are 6 purely periodic points $y \in \mathcal{P}$. Following the construction of t in the previous proof we get the following (values of x are the tiles in which $\Phi(z) = 1 + \Phi(\beta^3)$ lies):

y	t	x such that $\Phi(z) \in \mathcal{R}(x)$
. 001	$001010101(001)^{\omega}$	$\bullet 001 = \bullet (01\overline{1})^{\omega}$
. 010	$010011101(001)^{\omega}$. 001
.011	$011101010(011)^{\omega}$	$\bullet 011 = \bullet (10\overline{1})^{\omega}$
. 001	\cdot 111001010(011) $^{\omega}$	•011
•0 <u>1</u> 0	\cdot 110001010(011) $^{\omega}$. 011
$_{\bullet}0\overline{1}\overline{1}$	$.100110001(001)^{\omega}$	•001

This is in accordance with the previous lemma and also with Figure 4, where $\Phi(z)$ is shown and really lies in $\mathcal{R}((01\overline{1})^{\omega})$ and $\mathcal{R}((10\overline{1})^{\omega})$.

For d = 4, we depict a cut through the multiple tiling in Figure 5.

Lemma 7. For each point $z \in \mathbb{Z}[\beta]$ and for each $h \in \{1, 2, \ldots, d-1\}$ there exists $x \in \mathcal{L}_h$ such that $\Phi(z) \in \mathcal{R}(x)$, where \mathcal{L}_h is given by (1.1).

(

FIGURE 4. The double tiling for the case d = 3. The layer \mathcal{L}_1 is depicted in red and \mathcal{L}_2 in blue. We see that $\Phi(z) = 1 + \Phi(\beta^3) \in \mathcal{R}(\bullet(10\overline{1})^{\omega}) \cap \mathcal{R}(\bullet(01\overline{1})^{\omega})$.

Proof. Suppose $z \ge 0$. Let $k \in \mathbb{N}$ satisfy the hypothesis of Lemma 6. Let $y := \mathbf{0} \mathbf{0}^{j} \in \mathcal{P}$, with $j \in \{1, \ldots, d-1\}$ such that $y + \beta^{-k}z \in \llbracket h \rrbracket$. Denote $(\beta^{k}y + z)_{\mathsf{S}} = x_{1}x_{2}\cdots$. Then $\Phi(z)$ lies in $\mathcal{R}(x)$ for $x := \mathbf{0} x_{k+1}x_{k+2}\cdots$, and $x \in \llbracket h - \mathbf{0} x_{0}x_{1}\cdots x_{k} \rrbracket$. Since $y + \beta^{-k}z > 0$ and the digits 1 and $\overline{1}$ are alternating in $(\beta^{k}y + z)_{\mathsf{S}}$, we have that

$$\llbracket \mathbf{x}_0 x_1 \cdots x_k \rrbracket = \llbracket x_0 + x_1 + \cdots + x_k \rrbracket = \begin{cases} 0 & \text{if } x > 0, \\ 1 & \text{if } x < 0, \end{cases}$$

which means that $x \in \mathcal{L}_h$.

If z < 0, we already know that there exists $-x \in \mathcal{L}_{d-h}$ such that $\Phi(-z) \in \mathcal{R}(-x)$, hence $\Phi(z) \in \mathcal{R}(x)$. Since $-\llbracket h \rrbracket = \llbracket d - 1 - h \rrbracket$, we get that $\mathcal{L}_{d-h} = -\mathcal{L}_h$, therefore $x \in \mathcal{L}_h$.

Proof of Theorem 1. The collection of tiles $\mathcal{T} = \{ \mathcal{R}(x) : x \in \mathbb{Z}[\beta] \cap X_{\mathsf{S}} \}$ is a multiple tiling by Theorem 4.10 of [KS12]. By Lemma 7, the degree is at least d-1 since all points of $\Phi(\mathbb{Z}[\beta])$ lie in at least that many tiles. By Lemma 5, the degree is at most d-1 since there exists a point that lies in only d-1 tiles. \Box

TOMÁŠ HEJDA

FIGURE 5. A cut through the triple tiling for d = 4 that contains the point $\Phi(z) = 1 + \Phi(\beta^4) + \Phi(\beta^8)$. Each layer is depicted in different style and colour: \mathcal{L}_1 in solid red, \mathcal{L}_2 in dashed gray, and \mathcal{L}_3 in dotted green. Since $\mathcal{L}_3 = -\mathcal{L}_1$, the labels for \mathcal{L}_3 are omitted.

Proof of Theorem 2. By Lemma 7, each $\Phi(z)$ for $z \in \mathbb{Z}[\beta]$ lies in at least one tile $\mathcal{R}(x)$, $x \in \mathcal{L}_h$, therefore (since $\Phi(\mathbb{Z}[\beta])$ is dense in \mathbb{R}^{d-1} and $\mathcal{R}(x)$ is a closure of its interior) $\bigcup_{x \in \mathcal{L}_h} \mathcal{R}(x) = \mathbb{R}^{d-1}$. Suppose there exists $M \subset \mathbb{R}^{d-1}$ of positive measure such that all $x \in M$ lie in at least two tiles of \mathcal{L}_h . These points lie in another d-2 tiles, one for each $\tilde{h} \in \{1, 2, \ldots, d-1\} \setminus \{h\}$. Therefore the points of M are covered by d tiles, which is a contradiction with Theorem 1.

4. Open Problems

Problem 1. Take a (d, a)-Bonacci number for $d \ge 2$ and $a \ge 2$, i.e., the Pisot number $\beta \in (a, a + 1)$ satisfying $\beta^d = a\beta^{d-1} + \cdots + a\beta + a$. What is the number of layers of the multiple tiling for the symmetric β -transformation in this case?

Problem 2. Consider the *d*-Bonacci number β , and the transformation $T_{\beta,l}: [l, l+1), x \mapsto \beta x - \lfloor \beta x - l \rfloor$. We know that $T_{\beta,0}$ induces a tiling, since it satisfies Property (F) [FS92]. We prove here that $T_{\beta,-1/2}$ induces a multiple tiling with covering degree d-1. What happens if $-\frac{1}{2} < l < 0$? What are the possible values of the covering degree?

Acknowledgements

We acknowledge support by Grant Agency of the Czech Technical University in Prague grant SGS11/162/OHK4/3T/14, Czech Science Foundation grant 13-03538S, and ANR/FWF project "FAN – Fractals and Numeration" (ANR-12-IS01-0002, FWF grant I1136). We are also grateful for Sage and TikZ software which were used to prepare the figures [Sage, TikZ].

References

- [Aki02] Shigeki Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), no. 2, 283–308.
- [ARS04] Shigeki Akiyama, Hui Rao, and Wolfgang Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), no. 1, 135–160.
- [AS07] Shigeki Akiyama and Klaus Scheicher, Symmetric shift radix systems and finite expansions, Math. Pannon. 18 (2007), no. 1, 101–124.
- [FS92] Christiane Frougny and Boris Solomyak, *Finite beta-expansions*, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713–723.
- [Hol96] Michael Hollander, Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems, Ph.D. thesis, University of Washington, 1996.
- [IR06] Shunji Ito and Hui Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, Israel J. Math. 153 (2006), 129–155.
- [KS12] Charlene Kalle and Wolfgang Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2281–2318.
- [Rau82] Gérard Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), no. 2, 147–178.
- [Sage] The Sage Group, Sage: Open source mathematical software (version 6.4), 2014, http://www. sagemath.org [2015-03-01].
- [ST09] Anne Siegel and Jörg M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.) (2009), no. 118, 140.
- [Thu89] William P. Thurston, Groups, tilings and finite state automata, AMS Colloquium lectures, 1989.
- [TikZ] Till Tantau et al., TikZ & PGF (version 3.0.0), 2014, http://sourceforge.net/projects/pgf [2015-03-01].

LIAFA, CNRS UMR 7089, Université Paris Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13, France

DEPT. MATH. FNSPE, CZECH TECHNICAL UNIVERSITY IN PRAGUE, TROJANOVA 13, PRAGUE 12000, CZECH REP.

E-mail address: tohecz@gmail.com