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Abstract. It is a well-known fact that when β > 1 is a d-Bonacci number, i.e.,
βd = βd−1 + βd−2 + · · · + β + 1 for some d ≥ 2, then the Rauzy fractals arising in
the greedy β-expansions tile the space Rd−1. However, it was recently shown that
the Rauzy fractals arising in the symmetric Tribonacci expansions form a multiple
tiling with covering degree 2, i.e., almost every point of R2 lies in exactly 2 tiles. We
show that the covering degree for symmetric d-Bonacci expansions is equal to d− 1
for any d. We moreover characterize which tiles lie in the same layer of the multiple
tiling.

1. Introduction

Tilings arising from β-expansions were first studied in the 1980s by A. Rauzy [Rau82]
and W. Thurston [Thu89]. They consider the greedy β-expansions that are associated to
the transformation TG : x 7→ βx− bβxc. S. Akiyama [Aki02] showed that the collection of
β-tiles forms a tiling if and only if β satisfies the so-called weak finiteness property (W).
It is conjectured that all Pisot numbers satisfy (W) for the greedy expansions, this is one
of the versions of the famous unresolved Pisot conjecture [Hol96, ARS04].

If we drop the “greedy” hypothesis, things are getting more interesting. C. Kalle
and W. Steiner [KS12] showed that the symmetric β-expansions for two particular cubic
Pisot numbers β induce a double tiling — i.e., a multiple tiling such that almost every
point of the tiled space lies in exactly two tiles. More generally, they proved that every
“well-behaving” β-transformation with a Pisot number β induces a multiple tiling. Multiple
tilings in various related settings were as well considered by S. Ito and H. Rao [IR06].

In this paper we concentrate on the symmetric β-expansions associated to the transfor-
mation TS : x 7→ βx−bβx− 1

2c; we define TS on two intervals [− 1
2 ,

β
2 − 1)∪ [1− β

2 ,
1
2 ) that

form the support of its invariant measure, cf. Lemma 1. This transformation was studied
before e.g. by S. Akiyama and K. Scheicher in the context of shift radix systems [AS07].
We show the following theorem about the multiple tiling:

Theorem 1. Let d ∈ N, d ≥ 2, and let β ∈ (1, 2) be the d-Bonacci number, i.e., the Pisot
number satisfying βd = βd−1 + · · ·+ β + 1. Then the symmetric β-expansions induce a
multiple tiling of Rd−1 with covering degree equal to d− 1.

(Note that for any particular β and any particular transformation, the degree of the
multiple tiling can be computed from the intersection [or boundary] graph, eventually
multi-graph, as defined for instance by A. Siegel and J. Thuswaldner [ST09]; however,
such an algorithmic approach is not usable for an infinite number of cases.)

We also characterize the tiles that form the distinct layers of the multiple tiling:
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Theorem 2. Let d ∈ N, d ≥ 3, and let β ∈ (1, 2) be the d-Bonacci number. Let
h ∈ {1, 2, . . . , d− 1}. Then the collection of tiles {R(x) : x ∈ Lh }, where

(1.1) Lh :=
(
JhK ∩

[
1− β

2 ,
1
2
))
∪
(
Jh− dK ∩

[
− 1

2 ,
β
2 − 1

))
,

forms a tiling of Rd−1, that is, it is a layer of the multiple tiling guaranteed by Theorem 1.
Here we denote JjK := j + (β − 1)Z[β].

The two results rely substantially on the knowledge of the purely periodic integer points
of TS:

Theorem 3. Let d ∈ N, d ≥ 2, and let β ∈ (1, 2) be the d-Bonacci number. Let P denote
the set of non-zero x ∈ Z[β] such that T pS x = x for some p ≥ 1. Then

P ∪ {0} =
{
± •0p2p3 · · · pd : pi ∈ {0, 1}

}
=
{
±

d∑
i=2

piβ
−i : pi ∈ {0, 1}

}
.

(We exclude 0 from P as it does not lie in the support of the invariant measure of TS.)
The paper is organized as follows. In the following section we define all the necessary

notions. The theorems are proved in Section 3. We conclude by a pair of related open
questions in Section 4.

2. Preliminaries

2.1. Pisot numbers. An algebraic integer β > 1 is a Pisot number if all its Galois
conjugates, i.e., the other roots of its minimal polynomial, lie inside of the unit complex
circle. As usual, Z[β] denotes the ring of integer combinations of powers of β, and Q(β)
denotes the field generated by the rational numbers and by β.

Suppose that β is of degree d and has 2e < d complex Galois conjugates β(1), . . . , β(e),
β?(1), . . . , β

?
(e) and d− 2e− 1 real ones β(e+1), . . . , β(d−e−1). Denote σ(j) : Q(β)→ Q(β(j))

the corresponding Galois isomorphisms. Then we put

Φ: Q(β)→
d−e−1∏
j=1

Q(β(j)), x 7→
(
σ(1)(x), . . . , σ(d−e−1)(x)

)
.

Since
∏d−e−1
j=1 Q(β(j)) ⊂ Ce × Rd−2e−1 ' Rd−1, we consider that Φ: Q(β) → Rd−1. We

have the closure properties Φ(Z[β]) = Φ(Q(β)) = Rd−1.

In this paper, we focus on d-Bonacci numbers. For d ≥ 2 a d-Bonacci number is the
Pisot root of the polynomial βd = βd−1 + · · ·+ β + 1.

We say that two numbers x, y ∈ Z[β] are congruent modulo β− 1 if y−x ∈ (β− 1)Z[β].
By JhK, for h ∈ Z[β], we denote the congruence class modulo β − 1 that contains h,
i.e., JhK := h + (β − 1)Z[β]. If β is a d-Bonacci number, then the norm of β − 1 is
N(β − 1) = −(d− 1). Therefore there are exactly d− 1 distinct classes modulo β − 1 and
we can take numbers h ∈ {1, 2, . . . , d− 1} as their representatives, i.e.,

Z[β] =
d−1⋃
h=1

JhK =
d−1⋃
h=1

h+ (β − 1)Z[β].
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2.2. β-expansions. We fix β ∈ (1, 2). Let X ⊂ R be union of intervals and D : X 7→ Z
be a piecewise constant function (digit function) such that βx−D(x) ∈ X for all x ∈ X.
Then the map T : X → X, x 7→ βx −D(x) is a β-transformation. The β-expansion of
x ∈ X is then the (right-infinite) sequence x1x2x3 · · · ∈ (D(X))ω, where xi = DT i−1x.
We say that x1x2x3 · · · ∈ Zω is T -admissible if it is the expansion of some x ∈ X.

We define two particular β-transformations:
(1) Let XS := [− 1

2 ,
β
2 − 1) ∪ [1− β

2 ,
1
2 ) and DS(x) := bβx− 1

2c ∈ {1, 0, 1} (we denote
a := −a for convenience). This defines the symmetric β-expansions. We denote
TS the transformation and (x)S ∈ {1, 0, 1}ω the expansion of x ∈ XS.

(2) Let XB := [ 2−β
2β−2 ,

β
2β−2 ) and DB(x) := 1 if x ≥ 1

2β−2 and DB(x) := 0 other-
wise. This defines the balanced β-expansions. We denote TB and (x)B ∈ {0, 1}ω
accordingly.

Both TS and TB are plotted in Figure 1 for the Tribonacci number.
Besides expansions, we consider arbitrary representations. Any bounded sequence of

integers x−N · · ·x−1x0•x1x2 · · · is a representation of x =
∑
i≥−N xiβ

−i ∈ R.
A factor of a sequence x1x2x3 · · · is any finite word xkxk+1 · · ·xl−1 with l ≥ k ≥ −N .

A sequence x1x2 · · · is periodic if (∃k, p ∈ N, p ≥ 1)(∀i > k)(xi+p = xi). It is purely
periodic if k = 0.

2.3. Rauzy fractals. We consider the symmetric β-transformations for Pisot units β.
The symmetric β-transformation TS possesses a unique invariant measure absolutely
continuous w.r.t. the Lebesgue measure. For any x ∈ Z[β] ∩XS, we define the β-tile (or
Rauzy fractal) as the Hausdorff limit

R(x) := lim
n→∞

Φ
(
βnT−n(x)

)
⊂ Rd−1.

Note that T−n(−x) = −T−n(x) for all x ∈ Z[β]∩XS and all n, therefore R(−x) = −R(x).
The Rauzy fractals induce a multiple tiling, as was shown in Theorem 4.10 of [KS12].

We recall that the family of tiles T := {R(x)}x∈Z[β]∩XS is a multiple tiling if the following
is satisfied:

(1) The tiles R(x) take only finitely many shapes (i.e., are only finitely many modulo
translation in Rd−1).

(2) The family T is locally finite, i.e., for every bounded set U ⊂ Rd−1, only finitely
many tiles from T intersect U .

(3) The family T covers Rd−1, i.e., for every y ∈ Rd−1 there exists R(x) ∈ T such
that y ∈ R(x).

(4) Every tile R(x) is a closure of its interior.
(5) There exists an integer m ≥ 1 such that almost every point in Rd−1 lies in exactly

m tiles from T ; this m is called the covering degree of T .
If m = 1, we say that T is a tiling. Every multiple tiling with covering degree m ≥ 2 is a
union of m tilings; we call these tilings layers of the multiple tiling.

3. Proofs

From now on, we suppose that d ≥ 3 is an integer and β > 1 is the d-Bonacci number,
i.e., the root of βd = βd−1 + βd−2 + · · ·+ β + 1. In Lemma 1 we show that the support of
the invariant measure of TS is the whole XS; from this, we conclude that {R(x)}x∈Z[β]∩XS

is a multiple tiling [KS12, Theorem 4.10]. In Lemma 2 we establish a strong relation
between the symmetric and the balanced expansion. This allows us to use arithmetic
results on balanced expansions in Lemmas 3 and 4 to determine the degree of the multiple
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Figure 1. Transformations TS (left) and TB (right) for d = 3.
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Figure 2. The automata accepting the TS-admissible sequences (top)
and the TB-admissible ones (bottom).

tiling, which is done in Lemmas 5, 6 and 7. The proof of Theorem 3 is given after Lemma 4,
the proofs of Theorems 1 and 2 are at the very end of the section.

Lemma 1. The support of the invariant measure of TS is the whole domain XS =
[− 1

2 ,
β
2 − 1) ∪ [1− β

2 ,
1
2 ).

Proof. Denote l := − 1
2 . Put Yd := [T dS l,−l) and Yk := [T kS l, T

k+1
S l) for 1 ≤ k ≤ d − 1.

Similarly, put Y−d := [l,−T dS l) and Y−k := [−T k+1
S l,−T kS l) for 1 ≤ k ≤ d− 1, see Figure 1.

Define a measure µ by

dµ(x) = f(x) dx :=
( 1
β

+ 1
β2 + · · ·+ 1

βk

)
dx for x ∈ Y±k, 1 ≤ k ≤ d.

Then we verify that for any x ∈ XS, we have

µ
(
[x, x+ dx)

)
= f(x) dx = 1

β
dx

∑
y∈XS
TSy=x

f(y) = µ
(
T−1

S [x, x+ dx)
)
,

because

(3.1) TSY±k =
{
Y∓1 ∪ Y∓2 ∪ · · · ∪ Y∓d if k = d;
Y±(k+1) otherwise.

Therefore µ is the invariant measure of TS. �
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Lemma 2. Let x ∈ Z[β] ∩XS. Define

ψ : XS → XB, x 7→

{
1

β−1x if x ∈ [1− β
2 ,

1
2 );

1
β−1 (x+ 1) if x ∈ [− 1

2 ,
β
2 − 1).

Suppose that (ψx)B = t1t2t3 · · · . Then (x)S = (t2−t1)(t3−t2)(t4−t3) · · · . Moreover, (x)S
is purely periodic if and only if (ψx)B is, and the length of the periods is the same.

Proof. The transformations TS and TB are conjugated via ψ, i.e., the following diagram
commutes:

XS XS

XB XB

TS

ψ∼= ψ∼=
TB

(see Figure 1). If we denote U±k := ψY±k, we get that (3.1) is true for the sets Uk as well.
We depict the acceptance automaton for balanced expansions in Figure 2 bottom. If an
infinite path in the bottom automaton is labelled by t1t2t3 · · · , then the corresponding
path in the top automaton is labelled by x1x2x3 · · · with xi = ti+1 − ti.

The periodicity is preserved because T pS x = x⇐⇒ T pBψx = ψx. �

Lemma 3. Suppose that the balanced expansion of x ∈ Q(β) ∩XB has the form
(x)B = x1x2x3 · · ·xn(xn+1 · · ·xn+d)ω.

Then for any z ∈ Z[β] such that x+ z ∈ XB, the balanced expansion of x+ z has the form
(x+ z)B = y1y2y3 · · · ym(ym+1 · · · ym+d)ω,

where, moreover, xn+1 + · · ·+ xn+d = ym+1 + · · ·+ ym+d.

Proof. Clearly it is enough to consider the simplest case z = ±β−k for some k ≥ 2, since
any z ∈ Z[β] is a finite sum of powers of β. Then x+ z = •x̃1x̃2x̃3 · · · , where x̃i = xi for
i 6= k, and x̃k = xk ± 1.

Denote
si := •yi+1yi+2yi+3 · · ·︸ ︷︷ ︸

∈[0,1)

− •x̃i+1x̃i+2x̃i+3 · · ·︸ ︷︷ ︸
∈[− 1

β ,1+ 1
β )

,

then si ∈ (−1− 1
β , 1 + 1

β ), and we have that si+1 = βsi + (x̃i − yi); we will denote this
relation by an arrow si

x̃i−yi−−−−→ si+1.
Consider i ≤ k − 1. Then the only possible values of si and possible arrows are for

i ≤ k − 2:

0 0−−→ 0, 0 ±1−−→ ± •1d, ∓ •1n
±1−−→ ∓ •1n−1 (n 6= 0).

For i = k − 1, we have additionally:

∓ •1q
±2−−→ ± •0q−11d−q+1 (n 6= 0).

For i ≥ k, the arrows change completely since •x̃i+1x̃i+2 · · · ∈ [0, 1), whence si ∈ (−1, 1).
Also, the new states ± •0q1r have to be considered. We get:

± •0q1r
0−−→ ± •0q−11r (q 6= 0),

∓ •0q1r
±1−−→ ± •1q−10r1d−q−r+1 (q, r 6= 0),

∓ •1q0r1t
±1−−→ ∓ •1q−10r1t (q 6= 0).
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Figure 3. The “automaton” built in the proof of Lemma 3, for d = 3.
The solid arrows represent arrows labelled by 0 or ±1, the dashed arrows
by ±2 (these are available only for i = k − 1). The dotted arrows are
available only for i ≤ k − 1 since they lead to si+1 = ±1.

Since every d-tuple {si, si+1, . . . , si+d−1} contains a positive element, we can find i ≥ n
such that si = •0q1r ≥ 0 and x̃i+1x̃i+2x̃i+3 · · · is purely periodic, i.e., x̃i+1x̃i+2x̃i+3 · · · =
(p1p2 . . . pd)ω for some pj ∈ {0, 1}.

There are two cases. First, suppose pq+1pq+2 · · · pq+r = 0r. Then
yi+1yi+2yi+3 · · · = p1p2 . . . pq1rpq+r+1 · · · pd(p1 · · · pd)ω.

Second, suppose pq+1pq+2 · · · pq+r 6= 0r. Then we can find unique t, u such that
ptpt+1 · · · pq = 01q−t and pq+upq+u+1 · · · pq+r = 10r−u

(if we had p1p2 · · · pq = 1q, it would be a contradiction with •yi+1yi+2 · · · = si +
•x̃i+1x̃i+2 · · · < 1). Then the new pre-period and period are

(3.2) yi+1yi+2 · · · yi+d = p1 · · · pt−110q−tpq+1 · · · pq+u−101r−upq+r+1 · · · pd,
yi+d+1yi+d+2 · · · =

(
p1 · · · pt−11pt+1 · · · · · · · pq+u−10pt+u+1 · · · · · · · pd

)ω
,

because this value of the sequence yi+1yi+2 · · · is TB-admissible satisfies that

•yi+1yi+2 · · · − •x̃i+1x̃i+2 · · ·

= •0t−111q−t0u−111r−u0d−q−r
(
0t−110q+u−t−110d−q−u

)ω
= •0t1q−t0r1r−u + •

(
0t−110q+u−t−110d−q−u

)ω
= •0t1q−t0r1r−u + •0t1q+u−t = •0q1r = si,

and it is TB-admissible. In either case, the sum of the elements of the period is preserved.
�

Example 1. We apply the lemma to an example d = 3, (x)B = 0111011(010)ω and
z = β−7. Then x̃1x̃2 · · · = 0111012(010)ω and y1y2 · · · = 1000100101(100)ω. The
computation is as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
x̃i 0 1 1 1 0 1 2 0 1 0 0 1 0 · · ·
yi 1 0 0 0 1 0 0 1 0 1 1 0 0 · · ·
si •0 •111 •11 •1 •0 •111 •11 •011 •001 •101 •01 •011 •001 •01 · · ·
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(this computation follows the arrows in Figure 3). For i = 7, we have that s7 = •011 ≥ 0
and x8x9 · · · = (100)ω is purely periodic. Therefore we have q = 1 and r = 2 and
p1p2p3 = 010. We have pq+1 · · · pq+r = 10 6= 0r; we get t = 1 and u = 1. From (3.2) we
confirm that y8y9 · · · = 101(100)ω.

Lemma 4. Let h ∈ {1, 2, . . . , d − 1}. Then the set JhK ∩ XS contains exactly such
x ∈ Q(β) ∩XS that the balanced expansion of |x|β−1 has the form( |x|

β − 1

)
B

= x1x2 · · ·xn(xn+1xn+2 · · ·xn+d)ω(3.3)

with xn+1 + xn+2 + · · ·+ xn+d =


h if x > 0,
d− 1 if x < 0 and h = d− 1,
d− 1− h if x < 0 and 1 ≤ h ≤ d− 2.

Proof. We start by proving that whatever x ∈ JhK ∩ XS we take, it satisfies (3.3). As
•1j ∈ JjK for all j ∈ N, there exists y ∈ Z[β] such that

x =


y

β−1 + •1h if x > 0,
−
(

y
β−1 + •1d−1) if x < 0 and h = d− 1,

−
(

y
β−1 + •1d−1−h) if x < 0 and 1 ≤ h ≤ d− 2.

Since ( 1
β−1 × •1j)B = (1j0d−j)ω, the result follows from Lemma 3.

We finish by proving other direction. Suppose x satisfies (3.3). Without the loss
of generality, suppose that the length of the pre-period is a multiple of d, and put
y := (β − 1)× •(xn+1xn+2 · · ·xn+d)ω = •xn+1xn+2 · · ·xn+d ∈ JhK. Then

x− y
β − 1 = •(x1−xn+1) · · · (xd−xn+d)(xd+1−xn+1) · · · (xn−xn+d)0ω ∈ Z[β].

Therefore x ∈ JyK = JhK. �

Proof of Theorem 3. Let x ∈ Z[β] ∩XS. By Lemmas 2 and 4, the symmetric expansion
(|x|)S is periodic with period d. Suppose it is purely periodic. Then by Lemma 2,
( |x|β−1 )B is also purely periodic; we denote it ( |x|β−1 )B = (p1p2 · · · pd)ω. Therefore, since

1
β−1 = •(0d−11)ω, we have that |x| = •p1p2 · · · pd. The fact that p1 = 0 follows from
|x| ≤ 1

2 <
1
β .

On the other hand, any x = ±•0p2 · · · pd 6= 0 satisfies that x ∈ XS ∩ Z[β] and
( |x|β−1 )B = (0p2 · · · pd)ω is purely periodic, therefore x ∈ P. �

Lemma 5. There exists a number z ∈ Z[β] such that Φ(z) lies exactly in d− 1 tiles.

Before we prove this lemma, let us recall a helpful result by C. Kalle and W. Steiner:

Lemma 6. [KS12, Proposition 4.15] Suppose z ∈ Z[β] ∩ [0,∞). Let k ∈ N be an integer
such that for all y ∈ P, the expansions (y)S and (y + β−kz)S have a common prefix at
least as long as the period of y.

Then Φ(z) lies in a tile R(x) for x ∈ Z[β] ∩XS if and only if

x = T kS (y + β−kz) for some y ∈ P.

Proof of Lemma 5. We put z := (0d−11)d−1
• ∈ Z[β]∩ [0,∞). Let us fix y = ± •0y2y3 · · · yd

∈ P. Then we can write y as y = (−p1)•p1p2p3 · · · pd, where
pi = yi if y ≥ 0; pi = 1− yi if y < 0.



8 TOMÁŠ HEJDA

Note that h := p1 + p2 + · · ·+ pd ∈ {1, . . . , d− 1}. Let

t := ψ
(
y + β−d

2
z
)

= 1
β − 1 × •p1p2 · · · pd (0d−11)(0d−11) · · · (0d−11)︸ ︷︷ ︸

d− 1 times

.

Defining f(x) := βdx+ 1
β−1 , we get that

βd
2
t = fd−1

( 1
β − 1 × p1p2 · · · pd•

)
= fd−1(p1 · · · pd•(p1 · · · pd)ω

)
,

where fd−1(x) denotes the (d− 1)th iteration f(f(· · · f(x) · · · )).
We have the following relations:

f
(
x−N · · ·x0•(x1 · · ·xn−101d−n)ω

)
= x−N · · ·xn−110d−n•(x1 · · ·xn−11d−n+1)ω

(if x1 · · ·xn−1 6= 1n−1);
f
(
x−N · · ·x0•(1n−101d−n)ω

)
= x−N · · ·x01n0d−n−11•(0d−11)ω(3.4)

(if 1 ≤ n ≤ d− 1);
f
(
1d−10•(1d−10)ω

)
= 1d0d−11•(0d−11)ω.

It follows that

fd−h
(
p1 · · · pd•(p1 · · · pd)ω

)
= (something)•(0d−11)ω,

βd
2
t = fd−1(p1 · · · pd•(p1 · · · pd)ω

)
= t1t2 · · · td2•(0d−h1h)ω.

Since the right-hand sides of (3.4) contain neither 0d+1 nor 1d+1 as a factor, this sequence
is TB-admissible, therefore (t)B = (ψ(y + β−d

2
z))B = t1t2 · · · td2(0d−h1h)ω.

By Lemma 6, Φ(z) lies in the tile R(x) for

x = T d
2

S (y + β−d
2
z) = ψ−1T d

2

B (t).

Since (T d2

B t)B = (0d−h1h)ω, Lemma 2 gives that (x)S = (0d−h−110h−11)ω.
Finally, considering all y ∈ P at once, we conclude that Φ(z) lies exactly in tiles

R(•(0d−h−110h−11)ω) for h ∈ {1, 2, . . . , d− 1}. That makes d− 1 tiles. �

Example 2. For d = 3, there are 6 purely periodic points y ∈ P. Following the
construction of t in the previous proof we get the following (values of x are the tiles in
which Φ(z) = 1 + Φ(β3) lies):

y t x such that Φ(z) ∈ R(x)

•001 •001010101(001)ω •001 = •(011)ω
•010 •010011101(001)ω •001
•011 •011101010(011)ω •011 = •(101)ω
•001 •111001010(011)ω •011
•010 •110001010(011)ω •011
•011 •100110001(001)ω •001

This is in accordance with the previous lemma and also with Figure 4, where Φ(z) is
shown and really lies in R(•(011)ω) and R(•(101)ω).

For d = 4, we depict a cut through the multiple tiling in Figure 5.

Lemma 7. For each point z ∈ Z[β] and for each h ∈ {1, 2, . . . , d− 1} there exists x ∈ Lh
such that Φ(z) ∈ R(x), where Lh is given by (1.1).
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0(01-1)ω

1-1001(-110)ω

(1-10)ω

0-110(-101)ω

0(0-11)ω

01-11-10(10-1)ω

1-10(01-1)ω

01-110(-101)ω

-11-110(-101)ω

-1010(-101)ω

001(-110)ω

0-10(10-1)ω

00(-101)ω

-101(-110)ω

00-10(10-1)ω

10(0-11)ω

(-101)ω

10(-101)ω

100-1(1-10)ω

0(10-1)ω

1(-110)ω

-100(10-1)ω

0-10(01-1)ω

(0-11)ω

01-1(1-10)ω

-10(10-1)ω

01(-110)ω

-110(-101)ω

0-11-10(10-1)ω

-1001(-110)ω

-101-110(-101)ω

010(0-11)ω

-11(-110)ω

(01-1)ω

1-10(10-1)ω

-1(1-10)ω

0-101(-110)ω

010-1(1-10)ω

100(-101)ω

10-11-10(10-1)ω

010(-101)ω

00(10-1)ω

0(-101)ω

0010(-101)ω

0-11(-110)ω

00-1(1-10)ω

-10(01-1)ω

0-11-110(-101)ω

-110(0-11)ω

1-11-10(10-1)ω

10-1(1-10)ω

-1100-1(1-10)ω

1-1(1-10)ω

10-10(10-1)ω

(-110)ω

0-1(1-10)ω
-11-10(10-1)ω

(10-1)ω

01-10(10-1)ω

1-110(-101)ω

Φ(z)0

Figure 4. The double tiling for the case d = 3. The layer L1 is depicted
in red and L2 in blue. We see that Φ(z) = 1 + Φ(β3) ∈ R(•(101)ω) ∩
R(•(011)ω).

Proof. Suppose z ≥ 0. Let k ∈ N satisfy the hypothesis of Lemma 6. Let y := •01j ∈ P,
with j ∈ {1, . . . , d− 1} such that y + β−kz ∈ JhK. Denote (βky + z)S = x1x2 · · · . Then
Φ(z) lies in R(x) for x := •xk+1xk+2 · · · , and x ∈ Jh− •x0x1 · · ·xkK. Since y + β−kz > 0
and the digits 1 and 1 are alternating in (βky + z)S, we have that

J•x0x1 · · ·xkK = Jx0 + x1 + · · ·+ xkK =
{

0 if x > 0,
1 if x < 0,

which means that x ∈ Lh.
If z < 0, we already know that there exists −x ∈ Ld−h such that Φ(−z) ∈ R(−x),

hence Φ(z) ∈ R(x). Since −JhK = Jd − 1 − hK, we get that Ld−h = −Lh, therefore
x ∈ Lh. �

Proof of Theorem 1. The collection of tiles T = {R(x) : x ∈ Z[β] ∩ XS } is a multiple
tiling by Theorem 4.10 of [KS12]. By Lemma 7, the degree is at least d− 1 since all points
of Φ(Z[β]) lie in at least that many tiles. By Lemma 5, the degree is at most d− 1 since
there exists a point that lies in only d− 1 tiles. �
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1000-1(10-10)ω

10-110(0-101)ω

-10001(-1010)ω

10-11-1(1-100)ω

0010-1(01-10)ω

00-11-1(1-100)ω

-101-10(010-1)ω 01000-1(1-100)ω

-11000-1(1-100)ω

00-10(010-1)ω

0010(0-101)ω

0(-1001)ω

(1-1)ω

(-11)ω

1-11-1(1-100)ω

(01-10)ω(1-100)ω

1(-1010)ω

100(-1001)ω

1-110-1(01-10)ω

0(0-101)ω

0100(-1001)ω

1-110(0-101)ω (0-101)ω

0-11-1(1-100)ω

-1100(-1001)ω

(10-10)ω

-1(10-10)ω

0-110(0-101)ω

0100-1(10-10)ω

(001-1)ω

(-1001)ω (-1010)ω
0-1(1-100)ω

-11-10(010-1)ω

01-11-1(1-100)ω

0-1001(-1010)ω

01-10(010-1)ω

0(001-1)ω

-1(01-10)ω

-1(1-100)ω

1-1(1-100)ω

-1010(0-101)ω

0(010-1)ω

10-10(010-1)ω
00-1(1-100)ω

(010-1)ω

Φ(z)
0

Figure 5. A cut through the triple tiling for d = 4 that contains the
point Φ(z) = 1 + Φ(β4) + Φ(β8). Each layer is depicted in different style
and colour: L1 in solid red, L2 in dashed gray, and L3 in dotted green.
Since L3 = −L1, the labels for L3 are omitted.

Proof of Theorem 2. By Lemma 7, each Φ(z) for z ∈ Z[β] lies in at least one tile R(x),
x ∈ Lh, therefore (since Φ(Z[β]) is dense in Rd−1 and R(x) is a closure of its interior)⋃
x∈Lh R(x) = Rd−1. Suppose there exists M ⊂ Rd−1 of positive measure such that all

x ∈M lie in at least two tiles of Lh. These points lie in another d− 2 tiles, one for each
h̃ ∈ {1, 2, . . . , d− 1} \ {h}. Therefore the points of M are covered by d tiles, which is a
contradiction with Theorem 1. �

4. Open Problems

Problem 1. Take a (d, a)-Bonacci number for d ≥ 2 and a ≥ 2, i.e., the Pisot number
β ∈ (a, a+ 1) satisfying βd = aβd−1 + · · ·+ aβ + a. What is the number of layers of the
multiple tiling for the symmetric β-transformation in this case?

Problem 2. Consider the d-Bonacci number β, and the transformation Tβ,l : [l, l+1), x 7→
βx− bβx− lc. We know that Tβ,0 induces a tiling, since it satisfies Property (F) [FS92].
We prove here that Tβ,−1/2 induces a multiple tiling with covering degree d− 1. What
happens if − 1

2 < l < 0? What are the possible values of the covering degree?
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