MULTIPLE TILINGS ASSOCIATED TO d-BONACCI BETA-EXPANSIONS

TOMÁŠ HEJDA

Abstract

It is a well-known fact that when $\beta>1$ is a d-Bonacci number, i.e., $\beta^{d}=\beta^{d-1}+\beta^{d-2}+\cdots+\beta+1$ for some $d \geq 2$, then the Rauzy fractals arising in the greedy β-expansions tile the space \mathbb{R}^{d-1}. However, it was recently shown that the Rauzy fractals arising in the symmetric Tribonacci expansions form a multiple tiling with covering degree 2 , i.e., almost every point of \mathbb{R}^{2} lies in exactly 2 tiles. We show that the covering degree for symmetric d-Bonacci expansions is equal to $d-1$ for any d. We moreover characterize which tiles lie in the same layer of the multiple tiling.

1. Introduction

Tilings arising from β-expansions were first studied in the 1980s by A. Rauzy Rau82 and W. Thurston Thu89. They consider the greedy β-expansions that are associated to the transformation $T_{\mathrm{G}}: x \mapsto \beta x-\lfloor\beta x\rfloor$. S. Akiyama Aki02 showed that the collection of β-tiles forms a tiling if and only if β satisfies the so-called weak finiteness property (W). It is conjectured that all Pisot numbers satisfy (W) for the greedy expansions, this is one of the versions of the famous unresolved Pisot conjecture [Hol96, ARS04].

If we drop the "greedy" hypothesis, things are getting more interesting. C. Kalle and W. Steiner [KS12] showed that the symmetric β-expansions for two particular cubic Pisot numbers β induce a double tiling - i.e., a multiple tiling such that almost every point of the tiled space lies in exactly two tiles. More generally, they proved that every "well-behaving" β-transformation with a Pisot number β induces a multiple tiling. Multiple tilings in various related settings were as well considered by S. Ito and H. Rao [R06.

In this paper we concentrate on the symmetric β-expansions associated to the transformation $T_{\mathrm{S}}: x \mapsto \beta x-\left\lfloor\beta x-\frac{1}{2}\right\rfloor$; we define T_{S} on two intervals $\left[-\frac{1}{2}, \frac{\beta}{2}-1\right) \cup\left[1-\frac{\beta}{2}, \frac{1}{2}\right)$ that form the support of its invariant measure, cf. Lemma 1 This transformation was studied before e.g. by S. Akiyama and K. Scheicher in the context of shift radix systems AS07. We show the following theorem about the multiple tiling:

Theorem 1. Let $d \in \mathbb{N}, d \geq 2$, and let $\beta \in(1,2)$ be the d-Bonacci number, i.e., the Pisot number satisfying $\beta^{d}=\beta^{d-1}+\cdots+\beta+1$. Then the symmetric β-expansions induce a multiple tiling of \mathbb{R}^{d-1} with covering degree equal to $d-1$.
(Note that for any particular β and any particular transformation, the degree of the multiple tiling can be computed from the intersection [or boundary] graph, eventually multi-graph, as defined for instance by A. Siegel and J. Thuswaldner [ST09]; however, such an algorithmic approach is not usable for an infinite number of cases.)

We also characterize the tiles that form the distinct layers of the multiple tiling:

Theorem 2. Let $d \in \mathbb{N}, d \geq 3$, and let $\beta \in(1,2)$ be the d-Bonacci number. Let $h \in\{1,2, \ldots, d-1\}$. Then the collection of tiles $\left\{\mathcal{R}(x): x \in \mathcal{L}_{h}\right\}$, where

$$
\begin{equation*}
\mathcal{L}_{h}:=\left(\llbracket h \rrbracket \cap\left[1-\frac{\beta}{2}, \frac{1}{2}\right)\right) \cup\left(\llbracket h-d \rrbracket \cap\left[-\frac{1}{2}, \frac{\beta}{2}-1\right)\right), \tag{1.1}
\end{equation*}
$$

forms a tiling of \mathbb{R}^{d-1}, that is, it is a layer of the multiple tiling guaranteed by Theorem 1 Here we denote $\llbracket j \rrbracket:=j+(\beta-1) \mathbb{Z}[\beta]$.

The two results rely substantially on the knowledge of the purely periodic integer points of T_{s} :

Theorem 3. Let $d \in \mathbb{N}, d \geq 2$, and let $\beta \in(1,2)$ be the d-Bonacci number. Let \mathcal{P} denote the set of non-zero $x \in \mathbb{Z}[\beta]$ such that $T_{\mathrm{S}}^{p} x=x$ for some $p \geq 1$. Then

$$
\mathcal{P} \cup\{0\}=\left\{ \pm .0 p_{2} p_{3} \cdots p_{d}: p_{i} \in\{0,1\}\right\}=\left\{ \pm \sum_{i=2}^{d} p_{i} \beta^{-i}: p_{i} \in\{0,1\}\right\}
$$

(We exclude 0 from \mathcal{P} as it does not lie in the support of the invariant measure of T_{s}.)
The paper is organized as follows. In the following section we define all the necessary notions. The theorems are proved in Section 3. We conclude by a pair of related open questions in Section 4

2. Preliminaries

2.1. Pisot numbers. An algebraic integer $\beta>1$ is a Pisot number if all its Galois conjugates, i.e., the other roots of its minimal polynomial, lie inside of the unit complex circle. As usual, $\mathbb{Z}[\beta]$ denotes the ring of integer combinations of powers of β, and $\mathbb{Q}(\beta)$ denotes the field generated by the rational numbers and by β.

Suppose that β is of degree d and has $2 e<d$ complex Galois conjugates $\beta_{(1)}, \ldots, \beta_{(e)}$, $\beta_{(1)}^{\star}, \ldots, \beta_{(e)}^{\star}$ and $d-2 e-1$ real ones $\beta_{(e+1)}, \ldots, \beta_{(d-e-1)}$. Denote $\sigma_{(j)}: \mathbb{Q}(\beta) \rightarrow \mathbb{Q}\left(\beta_{(j)}\right)$ the corresponding Galois isomorphisms. Then we put

$$
\Phi: \mathbb{Q}(\beta) \rightarrow \prod_{j=1}^{d-e-1} \mathbb{Q}\left(\beta_{(j)}\right), \quad x \mapsto\left(\sigma_{(1)}(x), \ldots, \sigma_{(d-e-1)}(x)\right) .
$$

Since $\prod_{j=1}^{d-e-1} \mathbb{Q}\left(\beta_{(j)}\right) \subset \mathbb{C}^{e} \times \mathbb{R}^{d-2 e-1} \simeq \mathbb{R}^{d-1}$, we consider that $\Phi: \mathbb{Q}(\beta) \rightarrow \mathbb{R}^{d-1}$. We have the closure properties $\overline{\Phi(\mathbb{Z}[\beta])}=\overline{\Phi(\mathbb{Q}(\beta))}=\mathbb{R}^{d-1}$.

In this paper, we focus on d-Bonacci numbers. For $d \geq 2$ a d-Bonacci number is the Pisot root of the polynomial $\beta^{d}=\beta^{d-1}+\cdots+\beta+1$.

We say that two numbers $x, y \in \mathbb{Z}[\beta]$ are congruent modulo $\beta-1$ if $y-x \in(\beta-1) \mathbb{Z}[\beta]$. By $\llbracket h \rrbracket$, for $h \in \mathbb{Z}[\beta]$, we denote the congruence class modulo $\beta-1$ that contains h, i.e., $\llbracket h \rrbracket:=h+(\beta-1) \mathbb{Z}[\beta]$. If β is a d-Bonacci number, then the norm of $\beta-1$ is $N(\beta-1)=-(d-1)$. Therefore there are exactly $d-1$ distinct classes modulo $\beta-1$ and we can take numbers $h \in\{1,2, \ldots, d-1\}$ as their representatives, i.e.,

$$
\mathbb{Z}[\beta]=\bigcup_{h=1}^{d-1} \llbracket h \rrbracket=\bigcup_{h=1}^{d-1} h+(\beta-1) \mathbb{Z}[\beta] .
$$

2.2. β-expansions. We fix $\beta \in(1,2)$. Let $X \subset \mathbb{R}$ be union of intervals and $D: X \mapsto \mathbb{Z}$ be a piecewise constant function (digit function) such that $\beta x-D(x) \in X$ for all $x \in X$. Then the map $T: X \rightarrow X, x \mapsto \beta x-D(x)$ is a β-transformation. The β-expansion of $x \in X$ is then the (right-infinite) sequence $x_{1} x_{2} x_{3} \cdots \in(D(X))^{\omega}$, where $x_{i}=D T^{i-1} x$. We say that $x_{1} x_{2} x_{3} \cdots \in \mathbb{Z}^{\omega}$ is T-admissible if it is the expansion of some $x \in X$.

We define two particular β-transformations:
(1) Let $X_{\mathrm{S}}:=\left[-\frac{1}{2}, \frac{\beta}{2}-1\right) \cup\left[1-\frac{\beta}{2}, \frac{1}{2}\right.$) and $D_{\mathrm{S}}(x):=\left\lfloor\beta x-\frac{1}{2}\right\rfloor \in\{\overline{1}, 0,1\}$ (we denote $\bar{a}:=-a$ for convenience). This defines the symmetric β-expansions. We denote T_{S} the transformation and $(x)_{\mathrm{S}} \in\{\overline{1}, 0,1\}^{\omega}$ the expansion of $x \in X_{\mathrm{S}}$.
(2) Let $X_{\mathrm{B}}:=\left[\frac{2-\beta}{2 \beta-2}, \frac{\beta}{2 \beta-2}\right)$ and $D_{\mathrm{B}}(x):=1$ if $x \geq \frac{1}{2 \beta-2}$ and $D_{\mathrm{B}}(x):=0$ otherwise. This defines the balanced β-expansions. We denote T_{B} and $(x)_{\mathrm{B}} \in\{0,1\}^{\omega}$ accordingly.
Both T_{S} and T_{B} are plotted in Figure 1 for the Tribonacci number.
Besides expansions, we consider arbitrary representations. Any bounded sequence of integers $x_{-N} \cdots x_{-1} x_{0} x_{1} x_{2} \cdots$ is a representation of $x=\sum_{i \geq-N} x_{i} \beta^{-i} \in \mathbb{R}$.

A factor of a sequence $x_{1} x_{2} x_{3} \cdots$ is any finite word $x_{k} x_{k+1} \cdots x_{l-1}$ with $l \geq k \geq-N$. A sequence $x_{1} x_{2} \cdots$ is periodic if $(\exists k, p \in \mathbb{N}, p \geq 1)(\forall i>k)\left(x_{i+p}=x_{i}\right)$. It is purely periodic if $k=0$.
2.3. Rauzy fractals. We consider the symmetric β-transformations for Pisot units β. The symmetric β-transformation T_{S} possesses a unique invariant measure absolutely continuous w.r.t. the Lebesgue measure. For any $x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}$, we define the β-tile (or Rauzy fractal) as the Hausdorff limit

$$
\mathcal{R}(x):=\lim _{n \rightarrow \infty} \Phi\left(\beta^{n} T^{-n}(x)\right) \subset \mathbb{R}^{d-1}
$$

Note that $T^{-n}(-x)=-T^{-n}(x)$ for all $x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}$ and all n, therefore $\mathcal{R}(-x)=-\mathcal{R}(x)$.
The Rauzy fractals induce a multiple tiling, as was shown in Theorem 4.10 of KS12. We recall that the family of tiles $\mathcal{T}:=\{\mathcal{R}(x)\}_{x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}}$ is a multiple tiling if the following is satisfied:
(1) The tiles $\mathcal{R}(x)$ take only finitely many shapes (i.e., are only finitely many modulo translation in $\left.\mathbb{R}^{d-1}\right)$.
(2) The family \mathcal{T} is locally finite, i.e., for every bounded set $U \subset \mathbb{R}^{d-1}$, only finitely many tiles from \mathcal{T} intersect U.
(3) The family \mathcal{T} covers \mathbb{R}^{d-1}, i.e., for every $y \in \mathbb{R}^{d-1}$ there exists $\mathcal{R}(x) \in \mathcal{T}$ such that $y \in \mathcal{R}(x)$.
(4) Every tile $\mathcal{R}(x)$ is a closure of its interior.
(5) There exists an integer $m \geq 1$ such that almost every point in \mathbb{R}^{d-1} lies in exactly m tiles from \mathcal{T}; this m is called the covering degree of \mathcal{T}.
If $m=1$, we say that \mathcal{T} is a tiling. Every multiple tiling with covering degree $m \geq 2$ is a union of m tilings; we call these tilings layers of the multiple tiling.

3. Proofs

From now on, we suppose that $d \geq 3$ is an integer and $\beta>1$ is the d-Bonacci number, i.e., the root of $\beta^{d}=\beta^{d-1}+\beta^{d-2}+\cdots+\beta+1$. In Lemma 1 we show that the support of the invariant measure of T_{S} is the whole X_{S}; from this, we conclude that $\{\mathcal{R}(x)\}_{x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}}$ is a multiple tiling [KS12, Theorem 4.10]. In Lemma 2 we establish a strong relation between the symmetric and the balanced expansion. This allows us to use arithmetic results on balanced expansions in Lemmas 3 and 4 to determine the degree of the multiple

Figure 1. Transformations T_{S} (left) and T_{B} (right) for $d=3$.

Figure 2. The automata accepting the T_{S}-admissible sequences (top) and the T_{B}-admissible ones (bottom).
tiling, which is done in Lemmas 5, 6 and 7. The proof of Theorem 3 is given after Lemma 4 , the proofs of Theorems 1 and 2 are at the very end of the section.
Lemma 1. The support of the invariant measure of T_{S} is the whole domain $X_{\mathrm{S}}=$ $\left[-\frac{1}{2}, \frac{\beta}{2}-1\right) \cup\left[1-\frac{\beta}{2}, \frac{1}{2}\right)$.
Proof. Denote $l:=-\frac{1}{2}$. Put $Y_{d}:=\left[T_{\mathrm{S}}^{d} l,-l\right)$ and $Y_{k}:=\left[T_{\mathrm{S}}^{k} l, T_{\mathrm{S}}^{k+1} l\right)$ for $1 \leq k \leq d-1$. Similarly, put $Y_{-d}:=\left[l,-T_{\mathrm{S}}^{d} l\right)$ and $Y_{-k}:=\left[-T_{\mathrm{S}}^{k+1} l,-T_{\mathrm{S}}^{k} l\right)$ for $1 \leq k \leq d-1$, see Figure 1$]$

Define a measure μ by

$$
\mathrm{d} \mu(x)=f(x) \mathrm{d} x:=\left(\frac{1}{\beta}+\frac{1}{\beta^{2}}+\cdots+\frac{1}{\beta^{k}}\right) \mathrm{d} x \quad \text { for } x \in Y_{ \pm k}, 1 \leq k \leq d
$$

Then we verify that for any $x \in X_{\mathrm{S}}$, we have

$$
\mu([x, x+\mathrm{d} x))=f(x) \mathrm{d} x=\frac{1}{\beta} \mathrm{~d} x \sum_{\substack{y \in X_{\mathrm{S}} \\ T_{\mathrm{S}} y=x}} f(y)=\mu\left(T_{\mathrm{S}}^{-1}[x, x+\mathrm{d} x)\right)
$$

because

$$
T_{\mathrm{S}} Y_{ \pm k}= \begin{cases}Y_{\mp 1} \cup Y_{\mp 2} \cup \cdots \cup Y_{\mp d} & \text { if } k=d \tag{3.1}\\ Y_{ \pm(k+1)} & \text { otherwise } .\end{cases}
$$

Therefore μ is the invariant measure of T_{S}.

Lemma 2. Let $x \in \mathbb{Z}[\beta] \cap X_{\text {s }}$. Define

$$
\psi: X_{\mathrm{S}} \rightarrow X_{\mathrm{B}}, \quad x \mapsto \begin{cases}\frac{1}{\beta-1} x & \text { if } x \in\left[1-\frac{\beta}{2}, \frac{1}{2}\right) \\ \frac{1}{\beta-1}(x+1) & \text { if } x \in\left[-\frac{1}{2}, \frac{\beta}{2}-1\right)\end{cases}
$$

Suppose that $(\psi x)_{\mathrm{B}}=t_{1} t_{2} t_{3} \cdots$. Then $(x)_{\mathrm{S}}=\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(t_{4}-t_{3}\right) \cdots$. Moreover, $(x)_{\mathrm{S}}$ is purely periodic if and only if $(\psi x)_{\mathrm{B}}$ is, and the length of the periods is the same.

Proof. The transformations T_{S} and T_{B} are conjugated via ψ, i.e., the following diagram commutes:

$$
\begin{array}{ll}
X_{\mathrm{S}} \xrightarrow{T_{\mathrm{S}}} & X_{\mathrm{S}} \\
\cong \downarrow_{\psi} & \cong \downarrow \\
X_{\mathrm{B}} \xrightarrow{T_{\mathrm{B}}} & X_{\mathrm{B}}
\end{array}
$$

(see Figure 11. If we denote $U_{ \pm k}:=\psi Y_{ \pm k}$, we get that (3.1) is true for the sets U_{k} as well. We depict the acceptance automaton for balanced expansions in Figure 2 bottom. If an infinite path in the bottom automaton is labelled by $t_{1} t_{2} t_{3} \cdots$, then the corresponding path in the top automaton is labelled by $x_{1} x_{2} x_{3} \cdots$ with $x_{i}=t_{i+1}-t_{i}$.

The periodicity is preserved because $T_{\mathrm{S}}^{p} x=x \Longleftrightarrow T_{\mathrm{B}}^{p} \psi x=\psi x$.
Lemma 3. Suppose that the balanced expansion of $x \in \mathbb{Q}(\beta) \cap X_{\mathrm{B}}$ has the form

$$
(x)_{\mathrm{B}}=x_{1} x_{2} x_{3} \cdots x_{n}\left(x_{n+1} \cdots x_{n+d}\right)^{\omega} .
$$

Then for any $z \in \mathbb{Z}[\beta]$ such that $x+z \in X_{\mathrm{B}}$, the balanced expansion of $x+z$ has the form

$$
(x+z)_{\mathrm{B}}=y_{1} y_{2} y_{3} \cdots y_{m}\left(y_{m+1} \cdots y_{m+d}\right)^{\omega},
$$

where, moreover, $x_{n+1}+\cdots+x_{n+d}=y_{m+1}+\cdots+y_{m+d}$.
Proof. Clearly it is enough to consider the simplest case $z= \pm \beta^{-k}$ for some $k \geq 2$, since any $z \in \mathbb{Z}[\beta]$ is a finite sum of powers of β. Then $x+z=._{1} \tilde{x}_{1} \tilde{x}_{2} \tilde{x}_{3} \cdots$, where $\tilde{x}_{i}=x_{i}$ for $i \neq k$, and $\tilde{x}_{k}=x_{k} \pm 1$.

Denote

$$
s_{i}:=\underbrace{. y_{i+1} y_{i+2} y_{i+3} \cdots}_{\in[0,1)}-\underbrace{. \tilde{x}_{i+1} \tilde{x}_{i+2} \tilde{x}_{i+3} \cdots}_{\in\left[-\frac{1}{\beta}, 1+\frac{1}{\beta}\right)},
$$

then $s_{i} \in\left(-1-\frac{1}{\beta}, 1+\frac{1}{\beta}\right)$, and we have that $s_{i+1}=\beta s_{i}+\left(\tilde{x}_{i}-y_{i}\right)$; we will denote this relation by an arrow $s_{i} \xrightarrow{\tilde{x}_{i}-y_{i}} s_{i+1}$.

Consider $i \leq k-1$. Then the only possible values of s_{i} and possible arrows are for $i \leq k-2$:

$$
0 \xrightarrow{0} 0, \quad 0 \xrightarrow{ \pm 1} \pm .1^{d}, \quad \mp .1^{n} \xrightarrow{ \pm 1} \mp .1^{n-1} \quad(n \neq 0) .
$$

For $i=k-1$, we have additionally:

$$
\mp .1^{q} \xrightarrow{ \pm 2} \pm .0^{q-1} 1^{d-q+1} \quad(n \neq 0) .
$$

For $i \geq k$, the arrows change completely since.$\tilde{x}_{i+1} \tilde{x}_{i+2} \cdots \in[0,1)$, whence $s_{i} \in(-1,1)$. Also, the new states $\pm .0^{q} 1^{r}$ have to be considered. We get:

$$
\begin{array}{cl}
\pm .0^{q} 1^{r} \xrightarrow{0} \pm .0^{q-1} 1^{r} & (q \neq 0), \\
\mp .0^{q} 1^{r} \xrightarrow{ \pm 1} \pm .1^{q-1} 0^{r} 1^{d-q-r+1} & (q, r \neq 0), \\
\mp .1^{q} 0^{r} 1^{t} \xrightarrow{ \pm 1} \mp .1^{q-1} 0^{r} 1^{t} & (q \neq 0) .
\end{array}
$$

Figure 3. The "automaton" built in the proof of Lemma 3 for $d=3$. The solid arrows represent arrows labelled by 0 or ± 1, the dashed arrows by ± 2 (these are available only for $i=k-1$). The dotted arrows are available only for $i \leq k-1$ since they lead to $s_{i+1}= \pm 1$.

Since every d-tuple $\left\{s_{i}, s_{i+1}, \ldots, s_{i+d-1}\right\}$ contains a positive element, we can find $i \geq n$ such that $s_{i}=.0^{q} 1^{r} \geq 0$ and $\tilde{x}_{i+1} \tilde{x}_{i+2} \tilde{x}_{i+3} \cdots$ is purely periodic, i.e., $\tilde{x}_{i+1} \tilde{x}_{i+2} \tilde{x}_{i+3} \cdots=$ $\left(p_{1} p_{2} \ldots p_{d}\right)^{\omega}$ for some $p_{j} \in\{0,1\}$.

There are two cases. First, suppose $p_{q+1} p_{q+2} \cdots p_{q+r}=0^{r}$. Then

$$
y_{i+1} y_{i+2} y_{i+3} \cdots=p_{1} p_{2} \ldots p_{q} 1^{r} p_{q+r+1} \cdots p_{d}\left(p_{1} \cdots p_{d}\right)^{\omega}
$$

Second, suppose $p_{q+1} p_{q+2} \cdots p_{q+r} \neq 0^{r}$. Then we can find unique t, u such that

$$
p_{t} p_{t+1} \cdots p_{q}=01^{q-t} \quad \text { and } \quad p_{q+u} p_{q+u+1} \cdots p_{q+r}=10^{r-u}
$$

(if we had $p_{1} p_{2} \cdots p_{q}=1^{q}$, it would be a contradiction with $. y_{i+1} y_{i+2} \cdots=s_{i}+$. $\tilde{x}_{i+1} \tilde{x}_{i+2} \cdots<1$). Then the new pre-period and period are

$$
\begin{gather*}
y_{i+1} y_{i+2} \cdots y_{i+d}=p_{1} \cdots p_{t-1} 10^{q-t} p_{q+1} \cdots p_{q+u-1} 01^{r-u} p_{q+r+1} \cdots p_{d} \\
y_{i+d+1} y_{i+d+2} \cdots=\left(p_{1} \cdots p_{t-1} 1 p_{t+1} \cdots \cdots p_{q+u-1} 0 p_{t+u+1} \cdots \cdots p_{d}\right)^{\omega} \tag{3.2}
\end{gather*}
$$

because this value of the sequence $y_{i+1} y_{i+2} \cdots$ is T_{B}-admissible satisfies that

$$
\begin{aligned}
& . y_{i+1} y_{i+2} \cdots-. \tilde{x}_{i+1} \tilde{x}_{i+2} \cdots \\
& =.0^{t-1} 1 \overline{1}^{q-t} 0^{u-1} \overline{1} 1^{r-u} 0^{d-q-r}\left(0^{t-1} 10^{q+u-t-1} \overline{1} 0^{d-q-u}\right)^{\omega} \\
& =.0^{t} \overline{1} q{ }^{q-t} 0^{r} 1^{r-u}+.\left(0^{t-1} 10^{q+u-t-1} \overline{1} 0^{d-q-u}\right)^{\omega} \\
& =.0^{t} \overline{1}^{q-t} 0^{r} 1^{r-u}+.0^{t} 1^{q+u-t}=.0^{q} 1^{r}=s_{i},
\end{aligned}
$$

and it is T_{B}-admissible. In either case, the sum of the elements of the period is preserved.

Example 1. We apply the lemma to an example $d=3,(x)_{\mathrm{B}}=0111011(010)^{\omega}$ and $z=\beta^{-7}$. Then $\tilde{x}_{1} \tilde{x}_{2} \cdots=0111012(010)^{\omega}$ and $y_{1} y_{2} \cdots=1000100101(100)^{\omega}$. The computation is as follows:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
\tilde{x}_{i}		0	1	1		0	1	2	0	1	0	0	1	0	
y_{i}		1	0	0		1	0	0	1	0	1	1	0	0	
s_{i}	. 0	¢111	1̄1			1̄11		. 011	. 001				. 001	. 01	

(this computation follows the arrows in Figure 3). For $i=7$, we have that $s_{7}=.011 \geq 0$ and $x_{8} x_{9} \cdots=(100)^{\omega}$ is purely periodic. Therefore we have $q=1$ and $r=2$ and $p_{1} p_{2} p_{3}=010$. We have $p_{q+1} \cdots p_{q+r}=10 \neq 0^{r}$; we get $t=1$ and $u=1$. From (3.2) we confirm that $y_{8} y_{9} \cdots=101(100)^{\omega}$.

Lemma 4. Let $h \in\{1,2, \ldots, d-1\}$. Then the set $\llbracket h \rrbracket \cap X_{\mathrm{S}}$ contains exactly such $x \in \mathbb{Q}(\beta) \cap X_{\mathrm{S}}$ that the balanced expansion of $\frac{|x|}{\beta-1}$ has the form

$$
\begin{equation*}
\left(\frac{|x|}{\beta-1}\right)_{\mathrm{B}}=x_{1} x_{2} \cdots x_{n}\left(x_{n+1} x_{n+2} \cdots x_{n+d}\right)^{\omega} \tag{3.3}
\end{equation*}
$$

$$
\text { with } x_{n+1}+x_{n+2}+\cdots+x_{n+d}= \begin{cases}h & \text { if } x>0 \\ d-1 & \text { if } x<0 \text { and } h=d-1 \\ d-1-h & \text { if } x<0 \text { and } 1 \leq h \leq d-2 .\end{cases}
$$

Proof. We start by proving that whatever $x \in \llbracket h \rrbracket \cap X_{\mathrm{S}}$ we take, it satisfies (3.3). As . $1^{j} \in \llbracket j \rrbracket$ for all $j \in \mathbb{N}$, there exists $y \in \mathbb{Z}[\beta]$ such that

$$
x= \begin{cases}\frac{y}{\beta-1}+.1^{h} & \text { if } x>0, \\ -\left(\frac{y}{\beta-1}+.1^{d-1}\right) & \text { if } x<0 \text { and } h=d-1, \\ -\left(\frac{y}{\beta-1}+.1^{d-1-h}\right) & \text { if } x<0 \text { and } 1 \leq h \leq d-2 .\end{cases}
$$

Since $\left(\frac{1}{\beta-1} \times .1^{j}\right)_{\mathrm{B}}=\left(1^{j} 0^{d-j}\right)^{\omega}$, the result follows from Lemma 3
We finish by proving other direction. Suppose x satisfies (3.3). Without the loss of generality, suppose that the length of the pre-period is a multiple of d, and put $y:=(\beta-1) \times .\left(x_{n+1} x_{n+2} \cdots x_{n+d}\right)^{\omega}=._{n+1} x_{n+2} \cdots x_{n+d} \in \llbracket h \rrbracket$. Then

$$
\frac{x-y}{\beta-1}=.\left(x_{1}-x_{n+1}\right) \cdots\left(x_{d}-x_{n+d}\right)\left(x_{d+1}-x_{n+1}\right) \cdots\left(x_{n}-x_{n+d}\right) 0^{\omega} \in \mathbb{Z}[\beta] .
$$

Therefore $x \in \llbracket y \rrbracket=\llbracket h \rrbracket$.
Proof of Theorem [3. Let $x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}$. By Lemmas 2 and 4 , the symmetric expansion $(|x|)_{\mathrm{S}}$ is periodic with period d. Suppose it is purely periodic. Then by Lemma 2 , $\left(\frac{|x|}{\beta-1}\right)_{\mathrm{B}}$ is also purely periodic; we denote it $\left(\frac{|x|}{\beta-1}\right)_{\mathrm{B}}=\left(p_{1} p_{2} \cdots p_{d}\right)^{\omega}$. Therefore, since $\frac{1}{\beta-1}=.\left(0^{d-1} 1\right)^{\omega}$, we have that $|x|=. p_{1} p_{2} \cdots p_{d}$. The fact that $p_{1}=0$ follows from $|x| \leq \frac{1}{2}<\frac{1}{\beta}$.

On the other hand, any $x= \pm .0 p_{2} \cdots p_{d} \neq 0$ satisfies that $x \in X_{\mathrm{S}} \cap \mathbb{Z}[\beta]$ and $\left(\frac{|x|}{\beta-1}\right)_{\mathrm{B}}=\left(0 p_{2} \cdots p_{d}\right)^{\omega}$ is purely periodic, therefore $x \in \mathcal{P}$.

Lemma 5. There exists a number $z \in \mathbb{Z}[\beta]$ such that $\Phi(z)$ lies exactly in $d-1$ tiles.
Before we prove this lemma, let us recall a helpful result by C. Kalle and W. Steiner:
Lemma 6. KS12, Proposition 4.15] Suppose $z \in \mathbb{Z}[\beta] \cap[0, \infty)$. Let $k \in \mathbb{N}$ be an integer such that for all $y \in \mathcal{P}$, the expansions $(y)_{\mathrm{S}}$ and $\left(y+\beta^{-k} z\right)_{\mathrm{S}}$ have a common prefix at least as long as the period of y.

Then $\Phi(z)$ lies in a tile $\mathcal{R}(x)$ for $x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}$ if and only if

$$
x=T_{\mathrm{S}}^{k}\left(y+\beta^{-k} z\right) \quad \text { for some } y \in \mathcal{P} .
$$

Proof of Lemma 55 We put $z:=\left(0^{d-1} 1\right)^{d-1}, \in \mathbb{Z}[\beta] \cap[0, \infty)$. Let us fix $y= \pm .0 y_{2} y_{3} \cdots y_{d}$ $\in \mathcal{P}$. Then we can write y as $y=\left(-p_{1}\right) . p_{1} p_{2} p_{3} \cdots p_{d}$, where

$$
p_{i}=y_{i} \quad \text { if } y \geq 0 ; \quad p_{i}=1-y_{i} \quad \text { if } y<0 .
$$

Note that $h:=p_{1}+p_{2}+\cdots+p_{d} \in\{1, \ldots, d-1\}$. Let

$$
t:=\psi\left(y+\beta^{-d^{2}} z\right)=\frac{1}{\beta-1} \times . p_{1} p_{2} \cdots p_{d} \underbrace{\left(0^{d-1} 1\right)\left(0^{d-1} 1\right) \cdots\left(0^{d-1} 1\right)}_{d-1 \text { times }} .
$$

Defining $f(x):=\beta^{d} x+\frac{1}{\beta-1}$, we get that

$$
\beta^{d^{2}} t=f^{d-1}\left(\frac{1}{\beta-1} \times p_{1} p_{2} \cdots p_{d}\right)=f^{d-1}\left(p_{1} \cdots p_{d} \bullet\left(p_{1} \cdots p_{d}\right)^{\omega}\right)
$$

where $f^{d-1}(x)$ denotes the $(d-1)$ th iteration $f(f(\cdots f(x) \cdots))$.
We have the following relations:

$$
\begin{align*}
& f\left(x_{-N} \cdots x_{0 \bullet}\left(x_{1} \cdots x_{n-1} 01^{d-n}\right)^{\omega}\right)=x_{-N} \cdots x_{n-1} 10^{d-n} \cdot\left(x_{1} \cdots x_{n-1} 1^{d-n+1}\right)^{\omega} \\
&\left(\text { if } x_{1} \cdots x_{n-1} \neq 1^{n-1}\right) ; \\
& f\left(x_{-N} \cdots x_{0} \cdot\left(1^{n-1} 01^{d-n}\right)^{\omega}\right)=x_{-N} \cdots x_{0} 1^{n} 0^{d-n-1} 1 \cdot\left(0^{d-1} 1\right)^{\omega} \tag{3.4}\\
& f\left(1^{d-1} 0 \cdot\left(1^{d-1} 0\right)^{\omega}\right)=1^{d} 0^{d-1} 1 \cdot\left(0^{d-1} 1\right)^{\omega} . \quad(\text { if } 1 \leq n \leq d-1) ;
\end{align*}
$$

It follows that

$$
\begin{aligned}
f^{d-h}\left(p_{1} \cdots p_{d \bullet}\left(p_{1} \cdots p_{d}\right)^{\omega}\right) & =(\text { something }) \cdot\left(0^{d-1} 1\right)^{\omega}, \\
\beta^{d^{2}} t=f^{d-1}\left(p_{1} \cdots p_{d}\left(p_{1} \cdots p_{d}\right)^{\omega}\right) & =t_{1} t_{2} \cdots t_{d^{2}} \bullet\left(0^{d-h} 1^{h}\right)^{\omega} .
\end{aligned}
$$

Since the right-hand sides of (3.4) contain neither 0^{d+1} nor 1^{d+1} as a factor, this sequence is T_{B}-admissible, therefore $(t)_{\mathrm{B}}=\left(\psi\left(y+\beta^{-d^{2}} z\right)\right)_{\mathrm{B}}=t_{1} t_{2} \cdots t_{d^{2}}\left(0^{d-h} 1^{h}\right)^{\omega}$.

By Lemma 6, $\Phi(z)$ lies in the tile $\mathcal{R}(x)$ for

$$
x=T_{\mathrm{S}}^{d^{2}}\left(y+\beta^{-d^{2}} z\right)=\psi^{-1} T_{\mathrm{B}}^{d^{2}}(t)
$$

Since $\left(T_{\mathrm{B}}^{d^{2}} t\right)_{\mathrm{B}}=\left(0^{d-h} 1^{h}\right)^{\omega}$, Lemma 2 gives that $(x)_{\mathrm{S}}=\left(0^{d-h-1} 10^{h-1} \overline{1}\right)^{\omega}$.
Finally, considering all $y \in \mathcal{P}$ at once, we conclude that $\Phi(z)$ lies exactly in tiles $\mathcal{R}\left(.\left(0^{d-h-1} 10^{h-1} \overline{1}\right)^{\omega}\right)$ for $h \in\{1,2, \ldots, d-1\}$. That makes $d-1$ tiles.

Example 2. For $d=3$, there are 6 purely periodic points $y \in \mathcal{P}$. Following the construction of t in the previous proof we get the following (values of x are the tiles in which $\Phi(z)=1+\Phi\left(\beta^{3}\right)$ lies):

y	t	x such that $\Phi(z) \in \mathcal{R}(x)$
.001	$.001010101(001)^{\omega}$	$.001=.(01 \overline{1})^{\omega}$
.010	$.010011101(001)^{\omega}$.001
.011	$.011101010(011)^{\omega}$	$.011=.(10 \overline{1})^{\omega}$
$.00 \overline{1}$	$.111001010(011)^{\omega}$.011
$.0 \overline{1} 0$	$.110001010(011)^{\omega}$.011
$.0 \overline{1} \overline{1}$	$.100110001(001)^{\omega}$.001

This is in accordance with the previous lemma and also with Figure 4 where $\Phi(z)$ is shown and really lies in $\mathcal{R}\left(\cdot(01 \overline{1})^{\omega}\right)$ and $\mathcal{R}\left(\cdot(10 \overline{1})^{\omega}\right)$.

For $d=4$, we depict a cut through the multiple tiling in Figure 5 .
Lemma 7. For each point $z \in \mathbb{Z}[\beta]$ and for each $h \in\{1,2, \ldots, d-1\}$ there exists $x \in \mathcal{L}_{h}$ such that $\Phi(z) \in \mathcal{R}(x)$, where \mathcal{L}_{h} is given by (1.1).

Figure 4. The double tiling for the case $d=3$. The layer \mathcal{L}_{1} is depicted in red and \mathcal{L}_{2} in blue. We see that $\Phi(z)=1+\Phi\left(\beta^{3}\right) \in \mathcal{R}\left(.(10 \overline{1})^{\omega}\right) \cap$ $\mathcal{R}\left(.(01 \overline{1})^{\omega}\right)$.

Proof. Suppose $z \geq 0$. Let $k \in \mathbb{N}$ satisfy the hypothesis of Lemma 6. Let $y:=.01^{j} \in \mathcal{P}$, with $j \in\{1, \ldots, d-1\}$ such that $y+\beta^{-k} z \in \llbracket h \rrbracket$. Denote $\left(\beta^{k} y+z\right)_{\mathrm{S}}=x_{1} x_{2} \cdots$. Then $\Phi(z)$ lies in $\mathcal{R}(x)$ for $x:=. x_{k+1} x_{k+2} \cdots$, and $x \in \llbracket h-. x_{0} x_{1} \cdots x_{k} \rrbracket$. Since $y+\beta^{-k} z>0$ and the digits 1 and $\overline{1}$ are alternating in $\left(\beta^{k} y+z\right)_{\mathrm{S}}$, we have that

$$
\llbracket \cdot x_{0} x_{1} \cdots x_{k} \rrbracket=\llbracket x_{0}+x_{1}+\cdots+x_{k} \rrbracket= \begin{cases}0 & \text { if } x>0 \\ 1 & \text { if } x<0,\end{cases}
$$

which means that $x \in \mathcal{L}_{h}$.
If $z<0$, we already know that there exists $-x \in \mathcal{L}_{d-h}$ such that $\Phi(-z) \in \mathcal{R}(-x)$, hence $\Phi(z) \in \mathcal{R}(x)$. Since $-\llbracket h \rrbracket=\llbracket d-1-h \rrbracket$, we get that $\mathcal{L}_{d-h}=-\mathcal{L}_{h}$, therefore $x \in \mathcal{L}_{h}$.

Proof of Theorem 1. The collection of tiles $\mathcal{T}=\left\{\mathcal{R}(x): x \in \mathbb{Z}[\beta] \cap X_{\mathrm{S}}\right\}$ is a multiple tiling by Theorem 4.10 of KS12. By Lemma 7 , the degree is at least $d-1$ since all points of $\Phi(\mathbb{Z}[\beta])$ lie in at least that many tiles. By Lemma 5 the degree is at most $d-1$ since there exists a point that lies in only $d-1$ tiles.

Figure 5. A cut through the triple tiling for $d=4$ that contains the point $\Phi(z)=1+\Phi\left(\beta^{4}\right)+\Phi\left(\beta^{8}\right)$. Each layer is depicted in different style and colour: \mathcal{L}_{1} in solid red, \mathcal{L}_{2} in dashed gray, and \mathcal{L}_{3} in dotted green. Since $\mathcal{L}_{3}=-\mathcal{L}_{1}$, the labels for \mathcal{L}_{3} are omitted.

Proof of Theorem 2, By Lemma 7, each $\Phi(z)$ for $z \in \mathbb{Z}[\beta]$ lies in at least one tile $\mathcal{R}(x)$, $x \in \mathcal{L}_{h}$, therefore (since $\Phi(\mathbb{Z}[\beta])$ is dense in \mathbb{R}^{d-1} and $\mathcal{R}(x)$ is a closure of its interior) $\bigcup_{x \in \mathcal{L}_{h}} \mathcal{R}(x)=\mathbb{R}^{d-1}$. Suppose there exists $M \subset \mathbb{R}^{d-1}$ of positive measure such that all $x \in M$ lie in at least two tiles of \mathcal{L}_{h}. These points lie in another $d-2$ tiles, one for each $\tilde{h} \in\{1,2, \ldots, d-1\} \backslash\{h\}$. Therefore the points of M are covered by d tiles, which is a contradiction with Theorem 1

4. Open Problems

Problem 1. Take a (d, a)-Bonacci number for $d \geq 2$ and $a \geq 2$, i.e., the Pisot number $\beta \in(a, a+1)$ satisfying $\beta^{d}=a \beta^{d-1}+\cdots+a \beta+a$. What is the number of layers of the multiple tiling for the symmetric β-transformation in this case?

Problem 2. Consider the d-Bonacci number β, and the transformation $T_{\beta, l}:[l, l+1), x \mapsto$ $\beta x-\lfloor\beta x-l\rfloor$. We know that $T_{\beta, 0}$ induces a tiling, since it satisfies Property (F) [FS92]. We prove here that $T_{\beta,-1 / 2}$ induces a multiple tiling with covering degree $d-1$. What happens if $-\frac{1}{2}<l<0$? What are the possible values of the covering degree?

Acknowledgements

We acknowledge support by Grant Agency of the Czech Technical University in Prague grant SGS11/162/OHK4/3T/14, Czech Science Foundation grant 13-03538S, and ANR/FWF project "FAN Fractals and Numeration" (ANR-12-IS01-0002, FWF grant I1136). We are also grateful for Sage and TikZ software which were used to prepare the figures Sage, TikZ.

References

[Aki02] Shigeki Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), no. 2, 283-308.
[ARS04] Shigeki Akiyama, Hui Rao, and Wolfgang Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), no. 1, 135-160.
[AS07] Shigeki Akiyama and Klaus Scheicher, Symmetric shift radix systems and finite expansions, Math. Pannon. 18 (2007), no. 1, 101-124.
[FS92] Christiane Frougny and Boris Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713-723.
[Hol96] Michael Hollander, Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems, Ph.D. thesis, University of Washington, 1996.
[IR06] Shunji Ito and Hui Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, Israel J. Math. 153 (2006), 129-155.
[KS12] Charlene Kalle and Wolfgang Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2281-2318.
[Rau82] Gérard Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), no. 2, 147-178.
[Sage] The Sage Group, Sage: Open source mathematical software (version 6.4), 2014, http://www sagemath.org [2015-03-01].
[ST09] Anne Siegel and Jörg M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.) (2009), no. 118, 140.
[Thu89] William P. Thurston, Groups, tilings and finite state automata, AMS Colloquium lectures, 1989.
[TikZ] Till Tantau et al., TikZ \& PGF (version 3.0.0), 2014, http://sourceforge.net/projects/pgf [2015-03-01].

LIAFA, CNRS UMR 7089, Université Paris Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, France

Dept. Math. Fnspe, Czech Technical University in Prague, Trojanova 13, Prague 12000, Czech Rep.

E-mail address: tohecz@gmail.com

