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1. Introduction

The purpose of this dissertation study is to present the research progress of the
student. It comprises the results of paper [HP] that is accepted for publication
and paper [HS] that is in preparation, its extended abstract will appear in the
proceedings of Journées Montoises 2014. Both papers are collaborative work of the
student with one of his supervisors. The paper [HP] treats minimal distances of
points in spectra of certain complex Pisot units; it is the first result of this kind
for complex numeration systems. The paper [HS] studies purely periodic Rényi
expansions for the quadratic Pisot non-unit bases.

The study is divided into two main parts. In § 2, first the known results on
spectra of real and complex numbers are summarized, and then the results of the
paper [HP] are presented; last but not least, some ideas for continuation of the
work on this topic are given. Similarly organized is § 3, which treats purely periodic
expansions. Numerous remarks and comments are in § 4 and the study concludes
in § 5. Attached are the most recent versions of the two papers [HP, HS].

The PhD project is supported by several institutions: Ministry of Foreign
Affairs of France; Grant Agency of the Czech Technical University in Prague
(grant SGS14/205/OHK4/3T/14); Czech Science Foundation (grant 13-03538S);
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French National Research Agency (project “FAN – Fractals and Numeration”,
ANR-12-IS01-0002); Foundation “Nadání Josefa, Marie a Zdeňky Hlávkových”.

2. Spectra of Pisot and complex Pisot numbers

2.1. State of the art. For a number β > 1, its spectrum is a set

(2.1) Xm(β) :=
{
a0 + a1β + · · ·+ akβ

k : k ∈ N, ai ∈ {0, 1, . . . ,m}
}
,

where m ≥ 1 is an integer. The main interest is in determining the minimal
distance between two points of the spectrum. If the minimum (more precisely,
infimum) of the distances is positive, we say that the spectrum is uniformly discrete,
and we denote the minimal distance `m(β); otherwise we put `m(β) := 0. The
interest in this problem was initiated by Erdős, Joó, Joó and Komornik [EJK90,
EJJ92, EJK98, EK98]. Their main result is in showing the following for the base
β > 1:

Theorem 2.1. (1) If m ≥ β − 1, then `m(β) ≤ 1;
(2) If m < β−1, then the set Xm(β) is not relatively dense in [0,∞), i.e., there

exist sub-intervals I ⊂ [0,∞) of arbitrary length such that I ∩Xm(β) = ∅.
(3) If β is a Pisot number, then for all m ∈ N we have that `m(β) > 0, i.e.,

that Xm(β) is uniformly discrete.

The last statement was later improved by Bugeaud [Bug96], who showed that
β is a Pisot number if and only if there exists m0 such that Xm(β) is uniformly
discrete for all m ≥ m0. Feng [Fen13] further improved it by showing that we can
take m0 = dβe.

Many authors contributed to determining the value of `m(β) for various Pisot
numbers β. We would like to mention Komornik, Loreti and Pedicini [KLP00] and
Takao Komatsu [Kom02], who provided the results for quadratic Pisot units and
all values of m > β − 1. Feng and Wen [FW02] and Borwein and Hare [BH02]
independently of each other took the algorithmic approach; using their results
we can determine the value of `m(β) for any m and any Pisot number β. Last
but not least, Zaïmi [Zaï04] investigated the complementary question: For a fixed
m ∈ N, find β ∈ (m,m+ 1) such that `m(β) is the maximal possible. He showed
that β = m+

√
m2+4m
2 satisfies this.

Besides that, Zaïmi started to study the analogous question for complex bases.
He was interested in the question for which pairs (γ,m) the set Xm(γ) ⊂ C is
uniformly discrete and he proved a condition similar to the one of Bugeaud: For a
fixed γ ∈ C \ R with |γ| > 1, the set Xm(γ) is uniformly discrete for all m ∈ N
if and only if γ is a complex Pisot number. Complex Pisot numbers are such
algebraic integers that they are non-real, > 1 in modulus, and such that all their
Galois conjugates except their complex conjugate are < 1 in modulus.
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2.2. Our contribution. We now state the main results of paper [HP]. The first
result generalizes the second statement of Theorem 2.1 to the complex case:

Theorem A. Let γ ∈ C \ R, |γ| > 1 be a complex number, let m ∈ N satisfy
m < |γ|2 − 1. Then Xm(γ) is not relatively dense in C, i.e., there exist arbitrarily
large balls B = B(x,R) ⊂ C such that B ∩Xm(γ) = ∅.

For cubic complex Pisot units, i.e., complex cubic numbers γ with |γ| > 1 such
that their real conjugate γ′ satisfies |γ′| < 1 and |γ|2 = 1/γ′ we derive the following
result.

Theorem B. Let γ be a cubic complex Pisot unit such that 1/γ′ > 1 satisfies
Property (F). Then for all m > |γ|2 − 1, we have that Xm(γ) is a cut-and-project
(model) set. There exists an algorithm that for a given base γ computes the value
of `m(γ) for all m at once.

We implement the algorithm in Sage [Sage14]. Applying the algorithm to the
base complex Tribonacci constant γT ≈ −0.771 + 1.115i, a root of the polynomial
Y 3 + Y 2 + Y − 1, we obtain the following result:

Theorem C. Let γ be the complex Tribonacci constant and m ∈ N. Let k ∈ Z
be the maximal integer such that m ≥ (1− γ′)

( 1
γ′

)k, where γ′ is the real Galois
conjugate of γ. Then we have

(2.2) `m(γ) = |γ|−k.

2.3. Continuation of the work. There are several directions in which the
research may be continued:

(1) We observed that for γ = γT the complex Tribonacci constant, the values
of `m(γ) are units. The program in Sage allows us to see that this property
is generic and holds for a lot of bases. Therefore we would like to show
that it is true for all bases that satisfy the hypothesis of Theorem B.

(2) We treat only bases such that γ′ is positive. When considering the bases
with γ′ ∈ (−1, 0), we need to take into account Property (−F) related to
Ito-Sadahiro (−β)-expansions.

(3) Property (F) is not necessary for our result. It suffices to show that all
numbers from Z[γ′] can be represented as a finite sum

ak(γ′)k + ak−1(γ′)k−1 + · · ·+ al+1(γ′)l+1 + al(γ′)l,

where the digits are taken arbitrarily from the set aj ∈ {0, . . . ,m}. We
already know from Schmidt [Sch80] that all numbers from Z[γ′] have
periodic expansions, therefore only such expansions need to be considered.
For a lot of bases γ, we were able to find m0 such that this property is
established for all m > m0. However, it is not even clear whether such m0
exists for all cubic complex Pisot units with γ′ > 0. For instance when γ
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is a non-real root of Y 3 − 4Y 2 + 5Y − 1, we do not know any value of m
that would satisfy this.

(4) The second paper [HS] shows that some results on numeration systems
with a base that is a unit can be generalized to non-units by considering
finite (p-adic) places of the corresponding algebraic field. We know that for
γ complex Pisot non-unit, the set Xm(γ) is contained in certain cut-and-
project sets. The cut-and-project scheme allows more general acceptance
windows than subsets of Rn. It should be explored whether Xm(γ) for
non-unit γ is a cut-and-project set with an unusual acceptance window.
This would allow the results to be generalized to a wider class of bases.

3. Purely periodic Rényi expansions

3.1. State of the art. Rényi β-expansions [Rén57] provide a very natural gener-
alization of standard positional numeration systems such as the decimal system.
Expansions of numbers x ∈ [0, 1) can be defined in terms of a transformation. Let
β > 1 denote the base. Then the Rényi transformation is the map
(3.1) T : [0, 1)→ [0, 1), x 7→ βx− bβxc.
The expansion of x is the infinite string .x1x2x3 · · · where xj := bβT j−1xc. It is a
well-known fact that for b ∈ N, the b-expansion of x ∈ [0, 1) is eventually periodic
(i.e., there exists p, n such that xk+p = xp for all k ≥ n) if and only if x ∈ Q. This
result was generalized to all Pisot bases by Schmidt [Sch80], who proved that for a
Pisot number β the expansion of x ∈ [0, 1) is eventually periodic if and only if x is
an element of the algebraic field Q(β). Moreover, he showed that when β satisfies
β2 = aβ + 1 with a ≥ 1, then all x ∈ [0, 1) ∩Q have a purely periodic β-expansion.

Akiyama [Aki98] showed that if β is a Pisot unit satisfying certain finiteness
property called Property (F′) then there exists c > 0 such that all rational numbers
x ∈ Q ∩ [0, c) have a purely periodic expansion. If β is not a unit, then only
numbers from

QN(β) = {p/q : p ∈ Z, q ∈ N, gcd(q,N(β)) = 1}
can have a purely periodic expansion: All x ∈ Q \QN(β) have eventually periodic
expansions. Many Pisot non-units satisfy that there exists c > 0 such that all
x ∈ QN(β) ∩ [0, c) have purely periodic expansion. The supremum of c satisfying
this property is commonly denoted γ(β), and we put γ(β) = 0 if no such c exists.

The transformation T possesses an ergodic invariant measure (this was proved
already by Rényi in his original paper [Rén57]). Therefore this transformation
on the interval [0, 1) forms a dynamical system. It is easy to observe that the
expansion of x is purely periodic if and only if x is a periodic point of T , i.e., there
exists p ≥ 1 such that T px = x.

The main tool in the proofs are dynamical properies of the transformation T .
The natural extension (X , T ) of ([0, 1), T ) can be defined in an algebraic way.
Taking this form of the natural extension, several authors contributed to proving
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the following result: A point x ∈ [0, 1) has purely periodic β-expansion if and only
if x ∈ Q(β) and its diagonal embedding lies in the natural extension domain X .
The quadratic unit case was solved by Hara and Ito [HI89], the confluent unit
case by Ito and Sano [IS01, IS02]. Then Ito and Rao [IR05] resolved the unit case
completely using an algebraic argument. For non-unit bases β, one has to consider
finite (p-adic) places of the field Q(β). This consideration allowed Berthé and
Siegel [BS07] to expand the result to all (non-unit) Pisot numbers.

Recently, Minervino and Steiner [MS14] have described the boundary of X for
quadratic non-unit Pisot bases. This allowed them to find the value of γ(β):

Theorem 3.1 ([ABBS08, MS14]). Let β be the positive root of β2 = aβ + b for
a ≥ b > 0 two co-prime integers. Then

γ(β) =
{

1− (b−1)bβ
β2−b2 ∈ (0, 1) if a > b(b− 1),

0 otherwise.

3.2. Our contribution. The result of Minervino and Steiner relies on the fact
that when a and b are co-prime, the rational numbers are dense in the finite places
that need to be considered. This is not the case when a and b have a common
divisor. However, we manage to extend this result to such bases:

Theorem D. Let β be the positive root of β2 = aβ + b for a ≥ b > 0 two integers.
Then the value of γ(β) can be computed with arbitrary precision.

If moreover, a is a multiple of b, then γ(β) = 1 if and only if a ≥ b2 or
(a, b) = (24, 6), (30, 6).

It seems that if a, b are not co-prime then γ(β) is either 0, 1, or does not belong
to Q(β). We were able to show when γ(β) = 1 for the case b | a because the
distribution of rational numbers in the p-adic places is predictable. In the general
quadratic case, the behavior of the rational numbers is even more complicated.

3.3. Continuation of the work. The limitation of result to quadratic Pisot
numbers is given by the fact that only for them, the shape of the natural extension
is known. Obtaining the shape of the natural extension for instance for cubic Pisot
numbers (in terms of description of the boundary) would allow our approach to be
used to determine the value of γ(β) for these β.

For quadratic β, two questions should be answered:
(1) When is γ(β) equal to 0 or 1?
(2) When is γ(β) algebraic and when it is transcendental?

We started to investigate the first question for the case b | a and we know when
γ(β) = 1. But for showing when γ(β) = 0 we need to consider both boundaries of
X ; so far only considering the right boundary was sufficient. However, knowledge
of the distribution of rational numbers in the p-adic spaces is even more crucial for
that.
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4. Other results, remarks and comments

4.1. Balances of S-adic words. Besides the results mentioned above, we ob-
tained a result in combinatorics on words, namely on balances of S-adic words. If
S is a set of morphisms on infinite words over a finite alphabet A, then we say
that an infinite word u ∈ Aω is S-adic if there exist a sequence of morphisms
σ0, σ1, σ2, · · · ∈ S and a sequence of letters a0, a1, a2, · · · ∈ A such that

u = lim
n→∞

σ0 ◦ σ1 ◦ · · · ◦ σn−1(an),

see [BD13]. The balance number of a word u ∈ Aω is defined as the maximum

max
a∈A

max
v,w factors of u
|v|=|w|

∣∣|w|a − |v|a∣∣,
and it is a measure of discrepancy of the symbolic dynamical system associated to
the word u. The result can be stated as follows:

Theorem E. Let S be a set of morphisms on a fixed alphabet such that all
incidence matrices of them are regular. Suppose that for all n ∈ N, there exists
an S-adic word such that its balance number is > n. Then there exists an S-adic
word whose balance number is +∞.

The proof of this statement for a specific S-adic system that codes Brun
expansions is given in [DHS]. Its generalization to all S-adic systems with regular
incidence matrices is straightforward. Let us remark that the idea was used before
by Berthé, Cassaigne and Steiner [BCS13] for Arnoux-Rauzy words.

4.2. Multiplication of Rényi expansions. Let us ask yet another question:
How to multiply (eventually) periodic Rényi expansions? To the best of our
knowledge, this question has not been treated yet for non-integer bases.

If a reasonably fast algorithm for multiplication was provided, it would allow
software such as Sage [Sage14] to perform precise arithmetics in fields Q(β), and
at the same time, to be able to compare the values of the numbers fast. This is
due to the fact that Rényi expansions preserve the natural order on real numbers.
Currently, the numbers are stored in powers of β, which makes the comparison
difficult.

We managed to obtain a partial answer to this problem and we construct an
algorithm for multiplication of eventually periodic expansions in the base Golden
mean. However, the algorithm is currently clumsy, it needs some polishing, and
the rigorous proof of its correctness is in preparation. Altogether, this needs to be
considered as a work in progress, since basically only ideas were brought up. It is
aslo necessary to study for what bases besides the Golden mean our approach
works.
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4.3. Connection between the results. There is one thing that connects all
mentioned work on numeration systems: In all the results, periodic expansions
play a significant role. In the study of complex spectra, we mention that instead of
Property (F), it is sufficient to find arbitrary finite representations for numbers
purely periodic Rényi expansions. The other two results on purely periodic
expansions of rational numbers and on addition of periodic expansions have the
periodicity already in the title.

5. Conclusions

We obtained several results in both complex spectra and in purely periodic
Rényi expansions. Besides that, minor results in another related topics were
presented. Numerous suggestions for future work were given.
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SPECTRAL PROPERTIES OF CUBIC COMPLEX PISOT UNITS

TOMÁŠ HEJDA AND EDITA PELANTOVÁ

Abstract. For a real number β > 1, Erdős, Joó and Komornik study dis-

tances between consecutive points in the set

Xm(β) =
{ n∑

j=0

ajβ
j : n ∈ N, ak ∈ {0, 1, . . . ,m}

}
.

Pisot numbers play a crucial role for the properties of Xm(β). Following the

work of Zäımi, who considered Xm(γ) with γ ∈ C \ R and |γ| > 1, we show
that for any non-real γ and m < |γ|2 − 1, the set Xm(γ) is not relatively

dense in the complex plane.

Then we focus on complex Pisot units γ with a positive real conjugate γ′

and m > |γ|2− 1. If the number 1/γ′ satisfies Property (F), we deduce that

Xm(γ) is uniformly discrete and relatively dense, i.e., Xm(γ) is a Delone set.

Moreover, we present an algorithm for determining two parameters of the
Delone set Xm(γ) which are analogous to minimal and maximal distances in

the real case Xm(β). For γ satisfying γ3 + γ2 + γ − 1 = 0, explicit formulas

for the two parameters are given.

1. Introduction

In [EJK90, EJK98], Erdős, Joó and Komornik studied the set

Xm(β) :=
{ n∑

j=0

ajβ
j : n ∈ N, ak ∈ {0, 1, . . . ,m}

}
,

where β > 1. Since this set has no accumulation points, we can find an increasing
sequence

0 = x0 < x1 < x2 < · · · < xk < · · ·
such that Xm(β) = {xk : k ∈ N}. The research of Erdős et al.aims to describe
distances between consecutive points of Xm(β), i.e., the sequence (xk+1−xk)k∈N.
The properties of this sequence depend on the value m ∈ N. It is easy to show
that when m ≥ β − 1, we have xk+1 − xk ≤ 1 for all k ≥ 0; and when m < β − 1,
the distances xk+1 − xk can be arbitrarily large.

2010 Mathematics Subject Classification. Primary 11A63, 11K16, 52C23, 52C10; Secondary

11H99, 11-04.

c©XXXX American Mathematical Society
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Also, many properties of Xm(β) depend on β being a Pisot number (i.e., an
algebraic integer > 1 such that all its Galois conjugates are < 1 in modulus).
Bugeaud [Bug96] showed that

`m(β) := lim inf
k→∞

(xk+1 − xk) > 0 for all m ∈ N

if and only if base β is a Pisot number. Recently, Feng [Fen13] proved a stronger
result that the bound β−1 for the alphabet size is crucial. In particular, `m(β) = 0
if and only if m > β − 1 and β is not a Pisot number.

Therefore, the case β Pisot and m > β− 1 has been further studied. From the
approximation property of Pisot numbers we know that for a fixed β andm > β−1
the sequence (xk+1 − xk) takes only finitely many values. Feng and Wen [FW02]
used this fact to show that the sequence of distances (xk+1 − xk) is substitutive:
roughly speaking, it can be generated by a system of rewriting rules over a finite
alphabet. This allows us, for a fixed β and m, to determine values of all distances
(xk+1 − xk) and subsequently the value of `m(β). An algorithm for obtaining
the minimal distance `m(β) for certain β was also proposed by Borwein and
Hare [BH02].

The first formula which determines the value of `m(β) for all m at once ap-
peared in 2000: Komornik, Loreti and Pedicini [KLP00] studied the base Golden
mean. The generalization of this result to all quadratic Pisot units was provided
by Takao Komatsu [Kom02] in 2002.

To the best of our knowledge, the value of

(1.1) Lm(β) := lim sup
k→∞

(xk+1 − xk)

for allm is only known for the base Golden mean, due to Borwein and Hare [BH03].
Of course, for a given m, the value of Lm(β) can be computed using [FW02].

Zäımi [Zäı04] was interested in a complementary question: Fix the alphabet
size, i.e., the maximal digit m, and look for the extreme values of `m(β), where β
runs through Pisot numbers in (m,m + 1). He showed that `m(β) is maximized
for certain quadratic Pisot numbers.

Besides that, Zäımi started the study of the set Xm(γ), where γ is a complex
number > 1 in modulus, and he put

(1.2) `m(γ) := inf
{
|x− y| : x, y ∈ Xm(γ), x 6= y

}
.

He proved an analogous result to the one for real bases by Bugeaud, namely that
`m(γ) > 0 for all m if and only if γ is a complex Pisot number, where a complex
Pisot number is defined as a non-real algebraic integer > 1 in modulus whose
Galois conjugates except its complex conjugate are < 1 in modulus.

In the complex plane, `m(γ) and Lm(γ) cannot be defined as simply as in the
real case since we have no natural ordering of the set Xm(γ) in C. To overcome
this difficulty, we were inspired by notions used in the definition of Delone sets.
We say that a set Σ is:
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• uniformly discrete if there exists d > 0 such that |x−y| ≥ d for all distinct
x, y ∈ Σ;
• relatively dense if there exists D > 0 such that for all x ∈ C the closed

ball B(x,D/2) = {z ∈ C : |z − x| ≤ D/2} contains a point from Σ.

A set that is both uniformly discrete and relatively dense is called a Delone set.
Clearly, if `m(γ) as given by (1.2) is positive, then Xm(γ) is uniformly discrete

and `m(γ) is the maximal d in the definition of uniform discreteness. Hence
Xm(γ) is uniformly discrete for all m, when γ is a complex Pisot number.

Let us define

Lm(γ) := inf
{
D > 0 : B(x,D/2) ∩Xm(γ) 6= ∅ for all x ∈ C

}
.

In particular, Lm(γ) = +∞ if and only if Xm(γ) is not relatively dense.
The question for which pairs (γ,m) the set Xm(γ) is uniformly discrete or is

relatively dense is far from being solved. We provide a necessary condition for
relative denseness and we show that in certain cases, it is sufficient as well:

Theorem 1.1. Let γ ∈ C be a non-real number > 1 in modulus.

(i) If m < |γ|2 − 1, then Xm(γ) is not relatively dense.

(ii) [Zäı04] If m > |γ|2 − 1 and γ is not an algebraic number, then Xm(γ) is
not uniformly discrete.

The aim of this article is to study the sets Xm(γ) simultaneously for all m ∈ N,
for a certain class of cubic complex Pisot units with a positive conjugate γ′. For
such γ the Rényi expansions in base β := 1/γ′ have nice properties, which will
be crucial in the proofs. When this base satisfies a certain finiteness property,
called Property (F) in [Aki00], we show that for all sufficiently large m the set
Xm(γ) ⊆ C is a cut-and-project set; roughly speaking, Xm(γ) is formed by
projections of points from the lattice Z3 which lie in a sector bounded by two
parallel planes in R3; see Theorem 4.1. From that, the asymptotic behaviour of
`m(γ) and Lm(γ) follows easily, namely:

(1.3) `m(γ) = Θ(1/
√
m) and Lm(γ) = Θ(1/

√
m),

where f(m) = Θ(1/
√
m) means thatK1/

√
m ≤ f(m) ≤ K2/

√
m for some positive

constants K1, K2.
The method of inspection of Voronoi cells for a specific cut-and-project set, as

established by Masáková, Patera and Zich [MPZ03a, MPZ03b, MPZ05], enables
us to give a general formula for both `m(γ) and Lm(γ). In the case where γ =
γT ≈ −0.771 + 1.115i is the complex Tribonacci constant, i.e., the complex root
of Y 3 + Y 2 + Y − 1 with a positive imaginary part, we get the following result:

Theorem 1.2. Let γ be a complex root of the polynomial Y 3 +Y 2 +Y −1, m ∈ N,

and k ∈ Z be the greatest integer such that m ≥ (1−γ′)
(

1
γ′
)k

, where γ′ is the real



14 T. HEJDA AND E. PELANTOVÁ

Galois conjugate of γ. Then we have

(1.4) `m(γ) = |γ|−k and Lm(γ) = 2

√
1− (γ′)2

3− (γ′)2 |γ|
3−k

.

The article is organized as follows. In Section 2, we recall certain notions
from the theory of β-expansions. Section 3 provides the proof of the 1st part of
Theorem 1.1. In Section 4 we prove that Xm(γ) is a cut-and-project set in certain
cases. Section 5 describes the algorithms for computing `m(γ) and Lm(γ). These
algorithms are applied to the complex Tribonacci number in Section 6, providing
the proof of Theorem 1.2. In Section 7 we compute another characteristic of
Xm(γ) that is based on Delone tessellations. Comments and open problems are
in Section 8.

All computations were carried out in Sage [Sage]. The pictures were drawn
using TikZ [TikZ].

2. Preliminaries

2.1. β-numeration. Let us recall some facts concerning β-expansions. For a
real base β > 1, and for a number x ≥ 0, there exist a unique N ∈ Z and unique
integer coefficients aN , aN−1, aN−2, . . . such that aN 6= 0 and

0 ≤ x−
N∑

j=n

ajβ
j < βn for all n ≤ N.

The string aNaN−1 · · · a1a0.a−1a−2 · · · is then called the Rényi expansion of x in
base β [Rén57]. We immediately see that aj ∈ {k ∈ Z : 0 ≤ k < β}. For β /∈ Z,
it means that aj ∈ {0, . . . , bβc}, where bβc denotes the greatest integer ≤ β. If
only finitely many aj’s are non-zero, we speak about the finite Rényi expansion
of x. The set of numbers x ∈ R such that |x| has a finite Rényi expansion is
denoted Fin(β). We say that β > 1 satisfies Property (F) if Fin(β) is a ring, i.e.,
Fin(β) = Z[1/β], where Z[y] denotes as usual the integer combinations of powers
of y.

2.2. Complex Pisot numbers. We widely use the algebraic properties of a
cubic complex Pisot number γ. Such a number has two other Galois conjugates.
One of them is the complex conjugate γ. The second one is real and < 1 in
modulus; we denote it γ′; we have either −1 < γ′ < 0 or 0 < γ′ < 1. In
general, for z ∈ Q(γ) we denote by z′ ∈ Q(γ′) ⊂ R its image under the Galois
isomorphism that maps γ 7→ γ′. When γ is a unit (i.e., the constant term of its
minimal polynomial is ±1), we know that Z[1/γ] = Z[γ] = γZ[γ].

The method we present here can be applied only in the case when:

(2.1) γ is a cubic complex Pisot unit, its real Galois conjugate γ′ is positive,
and β := 1/γ′ has Property (F).
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It implies that the minimal polynomial of γ is of the form Y 3 + bY 2 +aY −1 with
a, b ∈ Z. Such a polynomial has a complex root if and only if its discriminant is
negative, i.e.,

−18ab− 4a3 + a2b2 + 4b3 − 27 < 0.

The number β = 1/γ′ is a root of Y 3−aY 2− bY −1. Akiyama [Aki00] showed
that β has Property (F) if and only if

|b− 1| ≤ a and b ≥ −1.

Therefore we are interested in cases where both conditions are satisfied.
In particular, the complex Tribonacci constant γT ≈ −0.771 + 1.115i (the root

of Y 3 + Y 2 + Y − 1 with a positive imaginary part) satisfies (2.1), as well as the
complex roots of polynomials Y 3 + bY 2 + aY − 1 for b = 0,±1 and a ≥ 1, with
the exception (a, b) = (1,−1).

3. Proof of Theorem 1.1

We prove the first part of Theorem 1.1. We cannot easily follow the lines of the
proof of the result for the real case (i.e., that m < β − 1 implies Lm(β) = +∞),
because it relies on the natural ordering of R. In the proof of the theorem, the
following ‘folklore’ lemma about the asymptotic density of relatively dense sets is
used:

Lemma 3.1. Let Σ ⊂ C be a relatively dense set. Then

(3.1) lim inf
r→∞

#
(
Σ ∩B(0, r)

)

r2
> 0,

where #A is the number of elements of the set A.

Proof. Since Σ is relatively dense, there exists λ > 0 such that every square in
C with side λ contains a point of Σ. Therefore every cell of the lattice λZ[i] =
{λa+iλb : a, b ∈ Z} contains a point of Σ. Since B(0, r) contains at least n2 cells,

where n =
⌊
r
√

2/λ
⌋
, we get

lim inf
r→∞

#
(
Σ ∩B(0, r)

)

r2
≥ lim inf

r→∞

⌊
r
√

2/λ
⌋2

r2
=

2

λ2
> 0. �

Proof of Theorem 1.1, 1st statement. For simplicity, we denote Σ := Xm(γ).
First, we show that for any r ≥ m we have

Σ ∩B
(
0, |γ|r −m

)
⊆ γ

(
Σ ∩B(0, r)

)
+ {0, . . . ,m}

and therefore

(3.2) #
(
Σ ∩B(0, |γ|r −m)

)
≤ (m+ 1)#

(
Σ ∩B(0, r)

)
.

To prove this, consider x =
∑k
j=0 ajγ

j with aj ∈ {0, . . . ,m} and such that |x| ≤
|γ|r −m. Then y := (x − a0)/γ =

∑k
j=1 ajγ

j−1 ∈ Σ and |y| ≤ (|x| + a0)/|γ| ≤
(|γ|r −m+m)/|γ| = r. Since x = γy + a0, the inclusion is valid.
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Our aim is to prove that under the assumption m < |γ|2 − 1, the set Σ is not
relatively dense. According to Lemma 3.1, it is enough to construct a sequence
(rk) such that rk →∞ and

lim
k→∞

nk = 0, where nk :=
#
(
Σ ∩B(0, rk)

)

r2
k

.

Since Σ = Xm(γ) always contains 0, the set Σ ∩ B(0, rk) is non-empty and we
have that nk > 0.

Consider a sequence given by the recurrence relation rk+1 = |γ|rk − m and

r0 := |γ|2 + m
|γ|−1 > m. The choice of r0 guarantees that rk = |γ|k+2

+ m
|γ|−1 ,

therefore rk → ∞ and rk+1/rk → |γ|. Then (3.2) gives #
(
Σ ∩ B(0, rk+1)

)
≤

(m+ 1)#
(
Σ ∩B(0, rk)

)
, which yields

nk+1

nk
≤ (m+ 1)r2

k

r2
k+1

k→∞−−−−→ m+ 1

|γ|2
< 1,

therefore nk → 0 as desired. �

4. Cut-and-project sets versus Xm(γ)

A cut-and-project scheme in dimension d + e consists of two linear maps Ψ :
Rd+e → Rd and Φ : Rd+e → Re satisfying:

(1) Ψ(Rd+e) = Rd and the restriction of Ψ to the lattice Zd+e is injective;
(2) the set Φ(Zd+e) is dense in Re.

Let Ω ⊂ Re be a nonempty bounded set such that its closure equals the closure
of its interior, i.e., Ω = Ω◦. Then the set

Σ(Ω) :=
{

Ψ(v) : v ∈ Zd+e,Φ(v) ∈ Ω
}
⊆ Rd

is called a cut-and-project set with acceptance window Ω. Cut-and-project sets
can be defined in a slightly more general way, cf. [Moo97]. The assumptions made
on the acceptance window Ω ensure that every cut-and-project set is a Delone
set.

We use the concept of cut-and-project sets for d = 2 and e = 1. With a slight
abuse of notation, we consider Ψ : R3 → C ' R2. Then it is straightforward that
for a cubic complex Pisot number γ, the set defined by

(4.1) Σγ(Ω) =
{
z ∈ Z[γ] : z′ ∈ Ω

}
, where Ω ⊆ R is an interval,

is a cut-and-project set. Really, we have

Ψγ(v0, v1, v2) = v0 + v1γ + v2γ
2 '

(<(v0 + v1γ + v2γ
2)

=(v0 + v1γ + v2γ2)

)

and Φγ(v0, v1, v2) = v0 + v1γ
′ + v2(γ′)2.

We will omit the index γ in the sequel. We now show how Xm(γ) fit into the
cut-and-project scheme:
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Theorem 4.1. Let γ be a cubic complex Pisot unit with a positive conjugate γ′,
and let m be an integer m ≥ |γ|2 − 1. Suppose that base 1/γ′ has Property (F).
Then Xm(γ) is a cut-and-project set, namely

(4.2) Xm(γ) = Σ(Ω) =
{
z ∈ Z[γ] : z′ ∈ Ω

}
with Ω =

[
0,m/(1− γ′)

)
.

Proof. Inclusion ⊆: Let z ∈ Xm(γ). Then z =
∑n
j=0 ajγ

j with aj ∈ {0, . . . ,m}
and clearly z ∈ Z[γ]. Moreover,

0 ≤ z′ =
n∑

j=0

aj(γ
′)j ≤

n∑

j=0

m(γ′)j <
m

1− γ′ .

Inclusion ⊇: Let us take z ∈ Z[γ] with z′ ∈ Ω. Denote β = 1/γ′ = γγ = |γ|2.
We discuss the following two cases:

(1) Suppose 0 ≤ z′ < 1. The real base β has Property (F) by the hypoth-
esis. Therefore every number from Z[1/β] ∩ [0, 1) has a finite expansion
0.a1a2a3 . . . an over the alphabet {0, . . . ,m0}, where m0 := bβc (the ex-
pansion certainly starts after the fractional point since z < 1). This
means that z′ =

∑n
j=1 ajβ

−j and therefore z =
∑n
j=1 ajγ

j ∈ Xm0(γ).

Since Xm0(γ) ⊆ Xm(γ), we get z ∈ Xm(γ).
(2) Suppose 1 ≤ z′ < m/(1 − γ′). Since z′ <

∑∞
j=0mβ

−j , there exists

a minimal k ≥ 0 such that z′ −∑k
j=0mβ

−j < 0. Let b ∈ {0, . . . ,m} be
such that

0 ≤ z′ −
k−1∑

j=0

mβ−j − bβ−k < β−k,

where
∑−1
j=0mβ

−j := 0. Then

u′ := βk
(
z′ −

k−1∑

j=0

mβ−j − bβ−k
)

satisfies 0 ≤ u′ < 1, and by the previous case there exist a1, . . . , an ∈
{0, . . . ,m0} such that u′ =

∑n
j=1 ajβ

−j . Altogether,

z′ =
k−1∑

j=0

m(γ′)j + b(γ′)k +
k+n∑

j=k+1

aj−k(γ′)j

and z ∈ Xm(γ). �

The property of cut-and-project sets which allows us to determine the values
of `m(γ) and Lm(γ) is the self-similarity. We say that a Delone set Σ ⊆ C is
self-similar with a factor κ ∈ C, |κ| > 1, if κΣ ⊆ Σ. In general, cut-and-project
sets are not self-similar. In our special case (4.1), not only the sets are self-similar,
but we can prove even a stronger property that will be useful later:
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Proposition 4.2. Let γ be a cubic complex Pisot unit. Then

Σ
(
(γ′)kΩ

)
= γkΣ(Ω) for any interval Ω and any k ∈ Z.

In particular, if Ω = [0, c) and γ′ is positive, then γ′Ω ⊆ Ω and γΣ ⊆ Σ.

Proof. We prove the claim for k = ±1, the general case follows by induction.
Because Z[γ] = γZ[γ], we have that

(4.3) Σ(γ′Ω) =
{
x ∈ γZ[γ] : x′ ∈ γ′Ω

}
=
{
x ∈ γZ[γ] : 1

γ′x
′ ∈ Ω

}

= γ
{
y ∈ Z[γ] : y′ ∈ Ω

}
= γΣ(Ω),

which implies the validity of the statement for k = +1. If we apply (4.3) to the

window Ω̃ = γ′Ω, we get Σ(Ω̃) = γΣ( 1
γ′ Ω̃), i.e., 1

γΣ(Ω̃) = Σ( 1
γ′ Ω̃), which implies

the validity of the statement for k = −1. �

Remark 4.3. Theorem 4.1 and Proposition 4.2 imply the asymptotic behaviour
of `m(γ) and Lm(γ) as described in (1.3), because |γ′| = 1/

√
|γ|.

5. Voronoi tessellations

For a Delone set Σ, the Voronoi cell of a point x ∈ Σ is the set of points which
are closer to x than to any other point in Σ. Formally

(5.1) T (x) :=
{
z ∈ C : |z − x| ≤ |z − y| for all y ∈ Σ

}
.

The cell is a convex polygon having x as an interior point. Clearly
⋃
x∈Σ T (x) = C

and the interiors of two cells do not intersect. Such a collection of cells {T (x) :
x ∈ Σ} is called a tessellation of the complex plane. For every cell T (x) we define
two characteristics:

• δ(T (x)) is the maximal diameter d > 0 such that B(x, d/2) ⊆ T (x);
• ∆(T (x)) is the minimal diameter D > 0 such that T (x) ⊆ B(x,D/2).

These δ and ∆ allow us to compute the values of `m(γ) and Lm(γ), namely

`m(γ) = inf
x
δ
(
T (x)

)
and Lm(γ) = sup

x
∆
(
T (x)

)
,

where x runs the whole set Σ = Xm(γ).
A protocell of a point x is the set T (x) − x. We can define δ,∆ analogously

for the protocells. The set of all protocells of the tessellation of Σ is called the
palette of Σ. We therefore obtain that

(5.2) `m(γ) = inf
T
δ(T ) and Lm(γ) = sup

T
∆(T ),

where T runs the whole palette of Σ.
For computing δ(T ) and ∆(T ), we modify the approach of [MPZ03a], where

2-dimensional cut-and-project sets based on quadratic irrationalities are con-
cerned. To find the Voronoi cell of a point x ∈ Σ(Ω) one does not need to
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0

x1

x2x3

L/2

U

V

Figure 1. To the proof of Lemma 5.1.

consider all points y ∈ Σ(Ω). It is easy to see that only points y closer to x than
∆(T (x)) influence the shape of the tile T (x), i.e.,

(5.3) T (x) =
{
z ∈ C : |z − x| ≤ |z − y| for y ∈ Σ(Ω), |y − x| ≤ ∆(T (x))

}
.

But before the shape of T (x) is known, we do not know the value of ∆(T (x)).
So we need to find some positive constant L such that

(5.4) ∆
(
T (y)

)
≤ L for all y ∈ Σ(Ω).

In the rest of this section, we consider cut-and-project sets Σ(Ω) as given by
(4.1), where γ satisfies (2.1), i.e., 1/γ′ has Property (F), and where Ω = [0, c) with
c > 0 (however, not necessarily of the form c = m

1−γ′ ). We denote by <z = z+z
2

and =z = z−z
2i respectively the real and the imaginary part of z ∈ C.

Lemma 5.1. Let Ω = [0, c) be an interval. Let p be the first positive integer
such that =(γp) and =γ have the opposite signs and let k be the smallest integer
satisfying (γ′)k < c/2. Then

(5.5) L := |γ|k max
i,j∈{0,p−1,p}

i<j

∣∣∣γ
i+j(γi − γj)
=(γiγj)

∣∣∣

satisfies ∆(T (y)) ≤ L for all y ∈ Σ(Ω).

Proof. We first prove the statement for y = 0. The choice of k guarantees that
x1 := γk, x2 := γk+p−1 and x3 := γk+p satisfy x1, x2, x3 ∈ Σ(Ω), whereas the
choice of p guarantees that 0 is an inner point of the triangle U with vertices x1,
x2, x3 (see Figure 1). According to (5.1) we have

V :=
{
z ∈ C : |z − 0| ≤ |z − xj | for j = 1, 2, 3

}
⊇ T (0).

Let ρ be the radius of the smallest ball centered at 0 and containing the whole
triangle V . From the definition of T (x) and ∆(T (x)) we see that ∆(T (0)) ≤ 2ρ.

The vertices of V are the points v12, v23, v31 such that

(5.6) |xi − vij | = |xj − vij | = |0− vij |.
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These equations have a unique solution

(5.7) vij = i
xixj(xi − xj)

2=(xixj)
, whence |vij | =

1

2

∣∣∣xixj(xi − xj)=(xixj)

∣∣∣.

Then ρ = max |vij |, thus the estimate (5.5) is valid for y = 0 and it remains to
show that it is valid for all y ∈ Σ(Ω). If y′ ∈ [0, c/2) then the three points y + xj
for j = 1, 2, 3 are in Σ(Ω). If y′ ∈ [c/2, c) then the three points y−xj for j = 1, 2, 3
are in Σ(Ω). Both of these cases follow from the fact that x′1, x

′
2, x
′
3 ∈ (0, c/2).

Therefore either x1, x2, x3 or −x1,−x2,−x3 are elements of Σ(Ω)−y, which means
that the same estimate (5.5) can be used. �

To describe the palette of Σ(Ω), we find all possible L-patches, i.e., the local
configurations around the points of Σ(Ω) up to a distance L. More precisely, the
L-patch of x ∈ Σ(Ω) is the set

(5.8) PL(x) :=
(
Σ(Ω) ∩B(x, L)

)
− x.

Since we consider the window Ω = [0, c), the L-patch equals

(5.9) PL(x) = {z ∈ Z[γ] : x′ + z′ ∈ [0, c) and |z| ≤ L}.
Lemma 5.2. Let x, y ∈ Σ(Ω) with Ω = [0, c) and L satisfying (5.4). Then the
equality of two L-patches PL(x) = PL(y) implies the equality of the protocells,
i.e., T (x)− x = T (y)− y.

Proof. Using (5.3) we can write

T (x) =
{
z ∈ C : |z − x| ≤ |z − v| for all v ∈ Σ(Ω) ∩B(x, L)

}

and thus

T (x)− x =
{
s ∈ C : |s| ≤ |s− w| for all w ∈ PL(x)

}
,

which depends only on PL(x) and not on x itself. �

Lemma 5.3. Let x, y ∈ Σ(Ω) with Ω = [0, c) and L > 0. If PL(x) 6= PL(y) then
there exists ξ from the following finite subset of [0, c]:

Ξ :=
{
z′ : z ∈ PL(0)

}
∪
{
c− z′ : z ∈ PL(0)

}
,(5.10)

such that ξ lies between x′ and y′, more precisely, min{x′, y′} < ξ ≤ max{x′, y′}.
Proof. Without loss of generality, suppose that there exists z such that z ∈ PL(x)
and z /∈ PL(y). According to (5.9) we have |z| ≤ L, x′ + z′ ∈ [0, c), and y′ + z′ /∈
[0, c).

If x′ < y′ then x′+ z′ < c ≤ y′+ z′, therefore 0 ≤ x′ < c− z′ ≤ y′ < c and thus
x′ and y′ are separated by ξ := c−z′. We have that c−z′ ∈ (0, c), or equivalently
z′ ∈ (0, c). As |z| ≤ L, we conclude that z ∈ PL(0).

If x′ > y′ then y′+z′ < 0 ≤ x′+z′, therefore 0 ≤ y′ < −z′ ≤ x′ < c and thus x′

and y′ are separated by ξ := −z′. We have that −z′ ∈ (0, c). As |−z| = |z| ≤ L,
we conclude that −z ∈ PL(0). �
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The two lemmas enable us to partition the interval Ω into sub-intervals such
that the points of Σ(Ω) whose Galois conjugates lie in the same sub-interval have
the same protocell, formally:

Corollary 5.4. Let Ω = [0, c) be an interval. Then there exists a finite set
Ξ = {ξ0 = 0 < ξ1 < · · · < ξN−1 < ξN = c} such that the mapping

x′ 7→ T (x)− x
is constant on [ξj−1, ξj) ∩ Z[γ′] for each j = 1, . . . , N .

Proof. Consider L satisfying (5.4) and let Ξ be given by (5.10). Suppose x, y ∈
Σ(Ω) satisfy x′, y′ ∈ [ξj−1, ξj). According to Lemma 5.3 we have PL(x) = PL(y).
Therefore by Lemma 5.2 their protocells are equal. �
Remark 5.5. From the last two statements, we can conclude that Σ([0, c)) is a
repetitive set with finite local complexity, i.e., for each L > 0, the number of L-
patches is finite and each of them appears for infinitely many x ∈ Σ([0, c)). Finite
local complexity is justified by the finiteness of set Ξ. Repetitiveness is justified by
the fact that the each interval [ξj−1, ξj) contains infinitely many points of Z[γ′].

Let us mention that while finite local complexity is a property of all cut-and-
project sets, repetitiveness depends on the boundary of window Ω. In particular,
cut-and-project sets with Ω of the form [l, r) are repetitive, cf. [Moo97].

The corollary is constructive and it allows us to compute all protocells of the
Voronoi tessellation of Σ(Ω) for a fixed Ω = [0, c):

Algorithm 5.6.

• Input: γ satisfying (2.1), Ω = [0, c), L satisfying (5.4), e.g.given by (5.5).
• Output: The palette of Σ(Ω).

(1) Compute the set Ξ = {ξ0 = 0 < ξ1 < · · · < ξN−1 < ξN = c} given by
(5.10).

(2) For each interval [ξj , ξj+1) compute the corresponding L-patch.
(3) Compute the corresponding protocells to each of these patches.
(4) Remove possible duplicates in the list of protocells.

Example 5.7. We illustrate how the algorithm works for γ = γT the complex
Tribonacci constant and c = 2/(1 − γ′) = β2 + 1, where we denote as usual
β := 1/γ′. In this case, Σ([0, c)) = X2(γ) by Theorem 4.1. We have k = −1
in Lemma 5.1 and since arg γ ∈ (π/2, π), we have p = 2. Therefore L is the
maximum of the values

1

|γ|
∣∣∣γ(γ − 1)

=γ
∣∣∣ ≈ 1.877,

1

|γ|
∣∣∣γ

2(γ2 − 1)

=(γ2)

∣∣∣ ≈ 1.877,
1

|γ|
∣∣∣γ

2(γ − 1)

=γ
∣∣∣ ≈ 2.546,

i.e., L = |γ(γ − 1)|/=γ. The set {z′ : z′ ∈ Z[γ′] ∩ [0, c) and |z| ≤ L} contains 28
points. The set Ξ, given as a union of two 28-element sets in (5.10), has only 33
elements instead of 56 because many elements appear in both of them. This gives
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x′ ∈ [0, 1) x′ ∈ [1, 1 + γ′) x′ ∈ [1 + γ′, 1
γ′ ) x′ ∈ [ 1

γ′ , 2 + γ′)

x′ ∈ [2 + γ′, 1 + 1
γ′ ) x′ ∈ [1 + 1

γ′ ,
1
γ′2 ) x′ ∈ [ 1

γ′2 , 1 + 1
γ′2 )

Figure 2. Voronoi protocells (the palette) for X2(γ) = Σ(Ω),
where Ω = [0, 2

1−γ′ ) and γ = γT is the complex Tribonacci con-
stant.

32 cases in steps 2–3 of the algorithm. After we remove the duplicates in the list
of the 32 protocells, we end up with the list in Figure 2. The double lines connect
the center of the protocell with the centers of the neighboring cells. A part of the
Voronoi tessellation of Σ(Ω) is drawn in Figure 3. Note that all computations are
performed in the algebraic library of Sage [Sage]. Numbers a+bγ+cγ2 ∈ Z[γ] are
stored as triples of integers (a, b, c) and thus results of all arithmetic operations
are precise.

Let us determine the parameters `2(γ) and L2(γ), with the help of rela-
tions (5.2). For each protocell T , the value δ(T ) is by definition the length
of the shortest double line in the picture of T . In Figure 4, the 1st protocell is
depicted: the neighbors are (counterclockwise) x1 = 1, x2 = 2 + 2γ + γ2 = γ−2,
x3 = 1 + γ + γ2 = γ−1 and x4 = 2 + γ + γ2 = 1 + γ−1. The closest point of
these to 0 is x2 = γ−2. For the last protocell, the closest point is analogously
−γ2. Therefore δ(T ) = |γ−2| = γ′ for the first and the last protocell. For the rest
of the protocells, the closest point to 0 is ±(1 + γ + γ2) = ±γ−1, and therefore
δ(T ) = |γ−1| = √γ′ = 1/

√
β. Since `2(γ) is the minimum of all δ(T ), we get that

`2(γ) = γ′ ≈ 0.544.

To compute L2(γ), we first determine the value of ∆(T ) for all protocells. By
definition, ∆(T ) is twice the maximal distance from 0 to the vertices of T . The
vertices of the protocell are points vij satisfying that |xi − vij | = |xj − vij | =
|0− vij |, see Figure 4. This is the same condition as (5.6), thus the points vij are
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Figure 3. Part of the Voronoi tessellation of X2(γ) = Σ(Ω),
where Ω = [0, 2

1−γ′ ) and γ = γT is the complex Tribonacci con-

stant. The point 0 is highlighted.

x2

v23 x1

v12

x4

v41

x3 v34

Figure 4. One of the protocells of X2(γ).

given by (5.7). Therefore we have

|v12| =
1

2

∣∣∣γ
−2(1− γ−2)

=(γ−2)

∣∣∣ ≈ 0.692, |v23| =
1

2

∣∣∣γ
−2(1− γ−1)

=(γ−1)

∣∣∣ ≈ 0.692,

|v34| = |v41| =
1

2

∣∣∣γ
−1(1 + γ−1)

=(γ−1)

∣∣∣ ≈ 0.510.

Numerically, it seems that the first two values are equal. To see that this is

true, we only have to check that |1 + γ−1| = 2|<(γ−1)|, because =(z2)
=z = 2<z for

any non-real z ∈ C. Since γ−1 and γ−1 are the Galois conjugates of β root of
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Y 3 − Y 2 − Y − 1, we have γ−1γ−1 = 1/β and γ−1 + γ−1 = 1 − β by Vieta’s

formulas. Now we easily verify that the numbers |1 + γ−1|2 = (1 + γ−1)(1 + γ−1)

and 4|<(γ−1)|2 = (γ−1 + γ−1)2 are equal. We can further simplify

|v23|2 =
1

4

γ−2γ−2(1− γ−1)(1− γ−1)
(

1
2i (γ

−1 − γ−1)
)2 = β

β2 − 1

3β2 − 1
,

because we see that the left-hand side is a symmetric rational function in γ−1, γ−1,
therefore Vieta’s formulas can be used to rewrite it in β’s.

Whence, for the 1st protocell, the maximal distance is ∆(T ) = 2|v23|. It
turns out that this is the value of ∆(T ) for all the protocells of Σ(Ω). Therefore
L2(γ) = ∆(T (x)) for all x ∈ X2(γ) and the value is

L2(γ) = 2

√
β
β2 − 1

3β2 − 1
≈ 1.384.

Example 5.8. Let us give one more example. We fix the same γ = γT as before
and we take c = (γ′)−2 = β2. Then p = 2 and k = 0 satisfy the hypothesis of
Lemma 5.1. Therefore

L =
∣∣∣γ

2(γ − 1)

=γ
∣∣∣ ≈ 3.4531

satisfies (5.4). In this case, Ξ is of size 40. Figure 5 denotes the result of Algo-
rithm 5.6. We get 7 different protocells. The 4th one has δ(T ) = 1, while all the

other ones have δ(T ) =
√
γ′. The value of ∆(T ) is equal to 2

√
β β2−1

3β2−1 ≈ 1.384

for all of them.
We can now run Algorithm 5.6 again, using the better upper bound on ∆(T ),

namely L ≈ 1.384. This can save us a lot of steps of the algorithm: The size
of Ξ reduces from 40 to 8, so reduces the number of the steps. We will use this
improved value of L in Section 6, where we study the sets Σ([0, c)) for all c > 0.

In the two examples, we listed the palettes of Σ([0, c)) for two different values
c = β2 + 1 and c = β2. Two protocells appears in both lists. The natural
question to ask is: For which values of c, a given prototile occurs in the palette of
Σ([0, c))? Using Lemma 5.2, this question can be transformed to an easier one:
for which values of c, a specific L-patch occurs in Σ([0, c)). Since we now treat
L-patches for varying c, we denote them PcL(x), and for convenience we denote(
PcL(x)

)′
:= {z′ : z ∈ PcL(x)}.

Lemma 5.9. Let c0 > 0 be fixed, c ∈ (0, c0) and L > 0. Denote −c0 =: w0 <
w1 < · · · < wn−1 < wn := c0 the sequence of numbers such that

(5.11) W := {w1, w2, . . . , wn−1} =
{
z′ ∈ Z[γ′] : |z| ≤ L and z′ ∈ (−c0, c0)

}
.

Then
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x′ ∈ [0, γ′) x′ ∈ [γ′, 1) x′ ∈ [1, 1 + γ′) x′ ∈ [1 + γ′, 1
γ′ )

x′ ∈ [ 1
γ′ ,

1
γ′2 − 1) x′ ∈ [ 1

γ′2 − 1, 1 + 1
γ′ ) x′ ∈ [1 + 1

γ′ ,
1
γ′2 )

Figure 5. Voronoi protocells (the palette) for Σ(Ω), where Ω =
[0, 1

γ′2 ) and γ = γT is the complex Tribonacci constant.

(i) For all x ∈ Σ([0, c)) we have

PcL(x) ⊆ {z ∈ Z[γ] : z′ ∈W}.
(ii) For all x ∈ Σ([0, c)) there exist i, k ∈ N, 1 ≤ i ≤ k ≤ n− 1, such that

{wi, wi+1, . . . , wk} =
(
PcL(x)

)′
.

(iii) Let 1 ≤ i ≤ k ≤ n− 1. Then a finite set {wi, wi+1, . . . , wk} containing 0
equals (PcL(x))′ for some x ∈ Σ([0, c)) if and only if

(5.12) wk − wi < c < wk+1 − wi−1.

(iv) For all x ∈ Σ([0, c)) there exists y ∈ Σ([0, c)) such that PcL(y) = −PcL(x).

Proof. (i) As Σ([0, c)) ⊆ Σ([0, c0)) we have PcL(x) ⊆ Pc0L (x) and the state-
ment follows from the relation (5.9).

(ii) Let i and k be the indices for which

wi = min
(
PcL(x)

)′
and wk = max

(
PcL(x)

)′
.

According to the relation (5.9) we get

(5.13) 0 ≤ x′ + wi and x′ + wk < c.

Consider wj for j ∈ N, i < j < k. Then wi < wj < wk, whence

0 ≤ wj + x′ < c. This implies that wj belongs to
(
PcL(x)

)′
as well.
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(iii) (⇒) Because of (5.13), we have wk − wi < c. Since wi−1 and wk+1 do

not belong to
(
PcL(x)

)′
, we have x′+wi−1 < 0 and x′+wk+1 ≥ c. Hence

wk+1 − wi−1 > c.
(iii) (⇐) Let wi−1, wi, wk, wk+1 satisfy (5.12). As Z[γ′] is dense in R, there

exists u ∈ (wi−1, wi) such that u ∈ Z[γ′] and u + c ∈ (wk, wk+1). Put
x′ := −u. Then

x′ + wi−1 < 0 < x′ + wi < x′ + wk < c < x′ + wk+1.

Since wi ≤ 0 ≤ wk, we have that 0 < x′ < c, therefore x ∈ Σ([0, c)). We

conclude from item (ii) that {wi, wi+1, . . . , wk} =
(
PcL(x)

)′
.

(iv) Since W is a centrally symmetric set, i.e, W = −W , we have that wj =
wn−j for all 0 ≤ j ≤ n. Then (5.12) is equivalent to

wn−i − wn−k < c < wn−i+1 − wn−k−1.

According to item (iii), the set {wi, . . . , wk} is an L-patch for some x ∈
Σ([0, c)) if and only if {−wk, . . . ,−wi} is an L-patch for some y ∈ Σ([0, c)).

�

Inequality (5.12) answers our question. To any L-patch, we can assign an
open interval such that this patch occurs in Σ([0, c)) if and only if c lies in this
interval. This fact has an important consequence: for any given set of L-patches,
the range of c such that these patches are precisely the L-patches of Σ([0, c)) is
an intersection of intervals and complements of intervals. As before, the result on
L-patches implies the following result on palettes.

Corollary 5.10. Let b0, c0 ∈ R satisfy that 0 < b0 < c0. Denote by Pal(Ω) the
palette of Σ(Ω), i.e., the set of all protocells of Σ(Ω). Then there exists a finite
sequence b0 =: θ0 < θ1 < · · · < θN−1 < θN := c0 such that the mapping

c 7→ Pal
(
[0, c)

)

is constant on each of the intervals (θj−1, θj) for j = 1, . . . , N .

Proof. Consider L satisfying (5.4) for Σ = Σ([0, b0)). For W given by (5.11) find
θ1 < · · · < θN−1 such that

(5.14) Θ := (W −W ) ∩ (b0, c0) = {θ1, . . . , θN−1}.
Let c, d ∈ (b0, c0) and suppose that the palette of Σ([0, c)) does not coincide with
the palette of Σ([0, d)). Without loss of generality there exists an L-patch of
x ∈ Σ([0, c)) that is not an L-patch of any y ∈ Σ([0, d)). This means that c
satisfies inequalities (5.12) for some indices i, k, whereas d does not satisfy them.
This fact implies that c and d are separated by a point wk − wi ∈W −W . �

The previous corollary says that there exist only finitely many palettes for
Σ([0, c)) with c ∈ [b0, c0). The following algorithm determines them:
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Algorithm 5.11.

• Input: γ satisfying (2.1), 0 < b0 < c0, L satisfying (5.4) for Ω = [0, b0),
e.g.given by (5.5).
• Output: All possible palettes Pal(Ω) of Σ(Ω) for Ω = [0, c) and b0 ≤ c <
c0.

(1) Compute the set Θ = {θ1 < · · · < θN−1} given by (5.14).
(2) Using Algorithm 5.6, compute the palettes Pal(Ω) for all Ω = [0, c) with

c = b0,
b0+θ1

2 , θ1, . . . ,
θN−2+θN−1

2 , θN−1,
θN−1+c0

2 .
(3) Remove possible duplicates in the list of palettes.

In Corollary 5.10 and Algorithm 5.11, the assumption b0 > 0 is very impor-
tant, because there exist infinitely many c ∈ (0, c0) with different palettes. How-
ever, these palettes cannot differ too much. In fact, the self-similarity property
(see Proposition 4.2) guarantees that the palette for the window [0, γ′c) differs
from the palette for [0, c) only by a scaling factor γ. Therefore the knowledge of
the palettes for c ∈ [γ′c0, c0) is sufficient for the description of all palettes.

Remark 5.12. As a consequence of item (iv) of Lemma 5.9, the list of L-patches
for Σ([0, c)) is invariant under rotation by 180◦. Therefore the palette Pal([0, c))
is invariant as well. Figures 2 and 5 witness this phenomenon.

6. Complex Tribonacci number exploited. Proof of Theorem 1.2

In this section, we describe the details of the proposed workflow on an example
— the complex Tribonacci base γ = γT . We aim at the proof of Theorem 1.2.
As usual, β := γγ = 1/γ′. The theorem will be proved by combining the self-
similarity property in Proposition 4.2 and the following result:

Proposition 6.1. Let Ω = [0, c) with c ∈ (β2, β3), where β := 1/γ′ and γ is the
complex Tribonacci constant. Denote Σ := Σ(Ω). Then

(6.1) min
x∈Σ

δ
(
T (x)

)
= 1/β and max

x∈Σ
∆
(
T (x)

)
= 2
√
β

√
β2 − 1

3β2 − 1
.

Proof. We put b0 := β2 and c0 := β3. In Example 5.8 we have shown that

L = 2
√
β
√

β2−1
3β2−1 ≈ 1.384 satisfies (5.4) for Ω = [0, b0). Using this L, we run

Algorithm 5.11. The first step of the algorithm computes the set Θ defined
by (5.14). This Θ has 14 elements, they are drawn in the following picture:

θ1=
2β

β+2
=θ2

θ3=
2β2−β−1

−β2+3β+2
=θ4

θ5=
β2+β−1

β2+1
=θ6

θ7=
2β+1

2β2−2
=θ8

θ9=
2β2−β

β2+β
=θ10

θ11=
β2+2

2β+2
=θ12

θ13=
2β2−1

2β2−β+1
=θ14

β2

β3

The number of cases in step 2 of the algorithm is then 30. This means that we have
to run Algorithm 5.6 exactly 30 times to obtain all possible palettes. Amongst
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Interval for c The palette of Σ(Ω), where Ω = [0, c)

β2

(β2, 2β)

(2β, β + 2)

(β + 2, β2 + 1)

(β2 + 1, 2β + 1)

(2β + 1, β2 + β)

(β2 + β, β2 + 2)

(β2 + 2, 2β + 2)

(2β + 2, β3)

Tile 1
γT4 T1

1
γT5 T2 T3

1
γT8 T4 T5 T6 T7 T8

1
γT10 T9 T10

Value of δ 1
β

1
β

1
β

1
β

1
β

1
β

1√
β

1√
β

1√
β

1√
β

1√
β

1√
β

1√
β

1

Value of ∆ A B A B B A B B B B B A B B

Value of ∆∗ 1 1 1 1 1 1
√
β
√
β
√
β
√
β
√
β 1

√
β
√
β

Table 1. The protocells for the complex Tribonacci constant

for windows Ω = [0, c) with c ∈ [β2, β3). We put A := 2
√

β2−1
3β2−1

and B := A
√
β. Each tile in the list appears rotated by 180◦as

well, we omit these to make the table shorter; see Remark 5.12.
For a cut-point θi, the palette is the intersection of the palettes
for the surrounding intervals, for instance Pal([0, β2 + 1)) =
{T2, T6, T8, T9,−T8,−T6,−T2}.

the 30 cases mentioned above, there are some duplicates, and we end up with
only 16 cases: 8 cases correspond to cut-points θ0, θ1, θ2, θ6, θ7, θ10, θ11, θ12, the
other 8 cases correspond to the open intervals between the cut-points. Moreover,
we observe that for each cut-point θi, the palette Pal([0, θi)) is the intersection
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of the palettes of the two surrounding intervals. All the palettes for the intervals
are depicted in Table 1.

At the bottom of the table, the values of δ(T ) and ∆(T ) are written out for
each protocell. It turns out that every row of the table but the special case c = β2

has the minimal value of δ equal to 1/β ≈ 0.5437 and the maximal value of ∆

equal to 2
√
β
√

β2−1
3β2−1 ≈ 1.3843. �

We recall that two of the runs of Algorithm 5.6, for c = 2
1−γ′ = β2 + 1 ∈ Θ,

i.e., for X2(γ), and for c = β2 are explained in Examples 5.7 and 5.8 (cf. also
Figures 2 and 5). We have drawn a part of the Voronoi tessellation of X2(γ) in
Figure 3.

Proof of Theorem 1.2. The theorem is a direct corollary of Proposition 4.2, The-
orem 4.1, Proposition 6.1 and of the following two facts:

• It cannot happen that c = m/(1− γ′) = (γγ)k = βk for some m ≥ 1 and
k ∈ Z. For, assume on the contrary that the last equation holds. Then
βk ≥ m and so k ≥ 1. Moreover, k ≥ 3, since γ is cubic, and we have, by
Galois isomorphism, that mγk = 1−γ. The relation |mγk| ≥ |γ3| > |1−γ|
yields a contradiction.

• If T is a Voronoi protocell in Σ(Ω) then γkT is a Voronoi protocell in
γkΣ(Ω) = Σ((γ′)kΩ) for any k ∈ Z. For any m ∈ N there exists k ∈ Z
such that (γ′)k m

1−γ′ ∈ (β2, β3). �

Remark 6.2. Let us point out that for a real base β the characteristic Lm(β)
given by (1.1) is not influenced by gaps xk+1 − xk occurring only in a bounded
piece of the real line. Therefore in general the value Lm(γ) as we have defined
for the complex number γ is not the precise analogy to Lm(β). Nevertheless, if
the set Xm(γ) is repetitive (i.e., any patch occurs infinitely many times), which
is our case, then omitting configurations in a bounded area of the plane plays
no role.

7. Delone tessellation — dual to Voronoi tessellation

From Voronoi tessellation we can construct its dual tessellation: Let Σ ⊆ C
be a Delone set. Consider a planar graph in C whose vertices are elements of
the set Σ and edges are line segments connecting x, y ∈ Σ where x and y are
neighbors, i.e., their Voronoi cells T (x) and T (y) share a side. This graph divides
the complex plane into faces; these faces are called Delone tiles. The collection of
Delone tiles is the Delone tessellation of Σ.

All vertices of a Delone tile lie on a circle; its center is a vertex of the Voronoi
tessellation. This is illustrated in Figure 6, which shows a small part of the set
X2(γ), where γ is the complex Tribonacci constant; the quadrilateral is inscribed
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+

Figure 6. Part of Voronoi (in solid lines) and Delone (in double
lines) tessellations of X2(γ) for γ = γT the complex Tribonacci
constant. The white cross is a vertex of the Voronoi tessellation,
and at the same time, it is a center of the gray circle, on which
four points of X2(γ) lie.

Figure 7. Delone tiles of the set X2(γ), where γ = γT is the
complex Tribonacci constant.

in the circle. The white cross marks the center of the circle and it is a common
vertex of four Voronoi cells.

The minimal distance infx∈Σ δ(T (x)) is equal to the shortest edge in the Delone
tessellation. On the other hand, the longest edge in the Delone tessellation is
(in general) shorter than supx∈Σ ∆(T (x)). Therefore, for a point x ∈ Σ(Ω) we
can define

∆∗
(
T (x)

)
:= max

{
|x− y| : y is a neighbor of x in Σ

}

and study its maximum over all points x ∈ Σ.
We can apply this to the sets Xm(γ). We define

L∗m(γ) = L∗m(γ) := sup
x∈Xm(γ)

∆∗
(
T (x)

)

if Xm(γ) is Delone, and L∗m(γ) = +∞ otherwise. When Xm(γ) is a cut-and-
project set, we know that it has a finite local complexity and therefore finitely
many different Delone tiles up to translation.

In the case of the complex Tribonacci base, the shapes of all Delone tiles of
X2(γ) are depicted in Figure 7. From Table 1 we get the following result:

Theorem 7.1. With the hypothesis of Theorem 1.2, we have:

L∗m(γ) = |γ|3−k.
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8. Comments and open problems

This paper treated a family of cubic complex Pisot units γ — such ones that
the real number 1/γ′ is positive and satisfies Property (F). We used the concept
of cut-and-project sets to study the properties of the sets Xm(γ). However, there
are other cases where it might be possible to use this concept:

(1) We can consider a different perspective of the Tribonacci constant. Let γ
be the complex root of Y 3 + Y 2 + Y − 1, and put β := 1/γ′. Both γ and
−γ are complex Pisot units.

It was shown by Vávra [Váv14] that the real Tribonacci constant β
has the so-called Property (−F). Shortly speaking, all numbers from I ∩
Z[−1/β] = I ∩ Z[β], where I := ( −ββ+1 ,

1
β+1 ), have a finite expansion of

the form a1
−β + a2

β2 + a3
−β3 + · · · with aj ∈ {0, 1}. From this, we can show

that Xm(−γ) is a cut-and-project set for arbitrary m ≥ 1. The idea goes
along the lines of the proof of Theorem 4.1.

(2) Consider any real Pisot unit β of degree n. Let γ = i
√
β. Then γ is a

complex Pisot unit of degree 2n, its Galois conjugates are γ and ±i
√
β′

for β′ conjugates of β.
Clearly Xm(γ) = Xm(−β) + i

√
βXm(−β). Therefore the Voronoi

cells of Xm(γ) are rectangles. Values `m(γ) and Lm(γ) can be easily
obtained from the minimal and maximal distances inXm(−β). In the case
n = 2, relations between Xm(−β) and cut-and-project sets in dimensions
d = e = 1 were established in [MPP14], implying that Xm(γ) is related
to cut-and-project sets in dimensions d = e = 2.

Let us note that Zäımi [Zäı04] evaluated `m(γ) for γ = i
√
β, m = bβ2c

and β > 1 the root of Y 2 − aY − a, a ∈ N.

(3) In the cubic case, we can weaken the hypothesis of Theorem 4.1. For
a fixed m, the Property (F) can be replaced by the assumption that all
numbers from Z[β]∩ [0, 1) have a finite β-representation over the alphabet
{0, 1, . . . ,m}, where we denote β := 1/γ′ > 1. Under such an assumption,
Xm(γ) is a cut-and-project set.

Akiyama, Rao and Steiner [ARS04] described precisely the set of purely
periodic expansions of points from Z[β]. They have shown that all of them
are of the form .ccc · · · = .cω, where 0 ≤ c < bβc and (a+ b) | c. Since all
numbers from Z[β]∩[0, 1) have finite or periodic β-expansions [Sch80] (and
the only periods are therefore the ones mentioned above), it is satisfactory
to find m1 such that the number .(a + b)ω has a finite representation
over the alphabet {0, . . . ,m1}. Under this hypothesis, all numbers from
Z[β] ∩ [0, 1) have a finite representation over the alphabet {0, . . . ,m} for

all m ≥ m1b β
a+bc. We were not able to establish the hypothesis in all

cases. We list some cases in Table 2.
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b a m1 Representation of .(a+ b)ω

−2 ≥ 3 2a− 2 .(a− 3)(2a− 2)(a− 3)(0)(1)

−3 ≥ 7 3a− 6 .(a− 4)(2a− 5)(3a− 6)(a− 7)(0)(1)

= 6 10 .(2)(7)(10)(10)(0)(0)(1)

= 5 9 .(0)(9)(9)(5)(0)(0)(1)

= 4 7 .(0)(2)(6)(7)(0)3(1)

−4 ≥ 8 8a− 11 .(a− 5)(2a− 11)(8a− 11)(4a− 31)(a− 8)(0)(1)

= 7 39 .(0)(16)(39)(27)(0)3(1)

= 6 47 .(0)(3)(44)(47)(0)4(1)

Table 2. List of pairs of a, b such that Xm(γ) is a cut-and-
project set, where γ is the non-real root of Y 3 + bY 2 + aY − 1

and m ≥ m1b 1/γ′

a+b c.

(4) Quartic Pisot units γ with |γ| ∈ (1, 2) are treated by Dombek, Masáková
and Ziegler in [DMZ13]. The authors study the question of whether every
element of the ring Z[γ] of integers of Q(γ) can be written as a sum of
distinct units. If the only units on the unit circle are ±1, then the question
can be interpreted as Property (F) over the alphabet {−1, 0, 1}. Therefore
the concept of cut-and-project sets can be applied to these quartic bases
and symmetric alphabets as well.

Let us conclude with several open questions:

(A) Is it true that all real cubic Pisot units β with a complex conjugate satisfy
the following: There exists m ∈ N such that all numbers from Z[β]∩ [0, 1)
have finite β-representation over the alphabet {0, . . . ,m}?

(B) Which real cubic unit bases −β, other than minus the Tribonacci con-
stant, satisfy Property (−F)? Which −β satisfy the statement proposed
in Question (A)?

(C) It is well known that, in the real case, Xm(β) is a relatively dense set
in R+ if and only if m > β − 1. Can we state analogous result in the
complex case? In particular, is Xm(γ) relatively dense set in C for all

m > |γ|2 − 1?
Can the complex modification of the Feng’s result [Fen13] be proved,

namely that `m(γ) = 0 if and only if m > |γ|2− 1 and γ is not a complex
Pisot number?
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BETA-EXPANSIONS OF RATIONAL NUMBERS
IN QUADRATIC PISOT BASES

TOMÁŠ HEJDA AND WOLFGANG STEINER

Abstract. We study the purely periodic β-expansions of rational numbers.
We give an algorithm for determining the value of the function γ(β) for
quadratic Pisot numbers β. For numbers satisfying β2 = aβ + b with b

dividing a, we show a necessary and sufficient condition for γ(β) = 1, i.e., that
all rational numbers p/q ∈ [0, 1) with gcd(q, b) = 1 have a purely periodic
β-expansion.

1. Introduction

Rényi β-expansions [Rén57] provide a very natural generalization of standard
positional numeration systems such as the decimal system. Expansions of numbers
x ∈ [0, 1) can be defined in terms of a transformation. Let β > 1 denote the base.
Then the β-transformation is the map

(1.1) T : [0, 1)→ [0, 1), x 7→ βx− bβxc.

The expansion of x is the infinite string x1x2x3 · · · where xj := bβT j−1xc. It is
a well-known fact that for β ∈ N, the β-expansion of x ∈ [0, 1) is eventually periodic
(i.e., there exists p, n such that xk+p = xp for all k ≥ n) if and only if x ∈ Q. This
result was generalized to all Pisot bases by Schmidt [Sch80], who proved that for
a Pisot number β the expansion of x ∈ [0, 1) is eventually periodic if and only if x is
an element of the algebraic field Q(β). Moreover, he showed that when β satisfies
β2 = aβ + 1, then all x ∈ [0, 1) ∩Q have a purely periodic β-expansion.

Akiyama [Aki98] showed that if β is a Pisot unit satisfying a certain finiteness
property called (F’) then there exists c > 0 such that all rational numbers
x ∈ Q ∩ [0, c) have a purely periodic expansion. If β is not a unit, then a rational
number p/q ∈ [0, 1) can have a purely periodic expansion only if q is co-prime to
the norm N(β). We denote Zb the set of rational numbers p/q with gcd(q, b) = 1.
Many Pisot non-units satisfy that there exists c > 0 such that all x ∈ ZN(β) ∩ [0, c)
have purely periodic expansion. This stimulates for the following definition:

Definition 1.1. Let β be a Pisot number, and let N(β) denote the norm of β.
Then we define γ(β) ∈ [0, 1] as the infimum of positive rational numbers p/q ∈ Q
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with gcd(q,N(β)) = 1 and with not purely periodic β-expansion:

γ(β) := inf
{
p
q : p, q > 0, gcd(q,N(β)) = 1,

p
q does not have a purely periodic β-expansion

}
.

The question is how to determine the value of γ(β). As well, knowing when
γ(β) = 0 or 1 is of big interest.

The transformation T possesses an ergodic invariant measure. Therefore this
transformation on the interval [0, 1) forms a dynamical system. It is easy to observe
that the expansion of x is purely periodic if and only if x is a periodic point of
T , i.e., there exists p ≥ 1 such that T px = x. The natural extension (X , T ) of
([0, 1), T ) can be defined in an algebraic way, cf. (2.1). Taking this form of the
natural extension, several authors contributed to proving the following result: A
point x ∈ [0, 1) has purely periodic β-expansion if and only if x ∈ Q(β) and its
diagonal embedding lies in the natural extension domain X . The quadratic unit
case was solved by Hama and Imahashi [HI97], the confluent unit case by Ito and
Sano [IS01, IS02]. Then Ito and Rao [IR05] resolved the unit case completely using
an algebraic argument. For non-unit bases β, one has to consider finite (p-adic)
places of the field Q(β). This consideration allowed Berthé and Siegel [BS07] to
expand the result to all (non-unit) Pisot numbers.

The first values of γ(β) for two particular non-units were provided by Akiyama,
Barat, Berthé and Siegel [ABBS08]. Recently, Minervino and Steiner [MS14]
described the boundary of X for quadratic non-unit Pisot bases. This allowed them
to find the value of γ(β):

Theorem 1.2 ([MS14]). Let β be the positive root of β2 = aβ + b for a ≥ b > 0
two co-prime integers. Then

γ(β) =

{
1− (b−1)bβ

β2−b2 ∈ (0, 1) if a > b(b− 1),
0 otherwise.

2. Preliminaries

2.1. Combinatorics on words. We consider both finite and infinite words over
a finite alphabet A. The set of finite words over A is denoted A∗. An infinite
word is (eventually) periodic if it is of the form v(u)ω = vuuu · · · ; v ∈ A∗ is the
pre-period and u ∈ A∗ \A0 is the period; if the pre-period is empty, we speak about
a purely periodic word. The set of all infinite words over A is denoted Aω, and it is
equipped with the Cantor topology. A prefix of a (finite or infinite) word w is any
finite word v such that w can be written as w = vu for some word u. We denote by
Pref(Ω) for Ω ⊆ Aω the set of all finite prefixes of words in Ω.
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For a finite word u = u0u1 . . . uk−1 and an arbitrary number α we define a natural
polynomial representation of the word as

P (α, u) :=
k−1∑

i=0

uiα
i.

This definition is extended to infinite words by taking a limit if the limit exists.

2.2. Representation spaces. We adopt the notation of [MS14], however, we
restrict ourselves to β being a quadratic Pisot number. Let K = Q(β). Since β is
quadratic, we know that there are exactly two infinite places of K. In one of them,
the norm of x is the absolute value |x|; in the second one, K ′, the norm of x is |x′|
where x→ x′ is the unique non-identical Galois isomorphism of K. Both these
places have R as their completion.

If β is not a unit, then we have to consider finite places of K as well. We
put Kf :=

∏
p|(β)Kp. The convergence in Kf can be expressed in terms of β-adic

expansions, cf. §2.4. Finally, K := K ×K ′ ×Kf and K′ := K ′ ×Kf . We define the
diagonal embeddings

δ : Q(β)→ K, x 7→ (x, x′, xf) and δ′ : Q(β)→ K′, x 7→ (x′, xf),

where xf is the vector of the embeddings of x into the spaces Kp. As well, we
define the projections π1 : K → K, π2 : K → K ′ and π3 : K → Kf . We put
P ′(u) = P (β′, u) and Pf(u) = P (β, u)f for every word u.

We fix some more notation. For rational integers a, b ∈ Z, (a, b) 6= (0, 0) we
denote by a ⊥ b the fact that a and b are co-prime, i.e., that gcd(a, b) = 1. Moreover,
for b 6= 0 we put (b)⊥ := {a ∈ Z : a ⊥ b} (the set of integers co-prime to b),
and Zb := {p/q : p ∈ Z, q ∈ (b)⊥} (the set of rational numbers with denominator
co-prime to b).

2.3. Beta-tiles. For x ∈ [0, 1), we define the β-tile of x as the Hausdorff limit

Q(x) := lim
i→∞

δ′
(
x− βkT−k(x)

)
⊆ K′.

Note that the standard definition of a β-tile for x ∈ Z[β−1] ∩ [0, 1) is R(x) :=
δ′(x) − Q(x). We now describe the natural extension (X , T ) of the dynamical
system ([0, 1), T ) as a subset of the representation space K. For quadratic Pisot β,
root of β2 = aβ + b with a ≥ b ≥ 1, it comprises of two suspensions of β-tiles:

X :=
(
[0, β − a)×Q(0)

)
∪
(
[β − a, 1)×Q(β − a)

)
,

T : X → X , z 7→ βz − δ
(
bβπ1(z)c

)
.(2.1)

It is remarkable that the natural extension given by this formula is not a closed set,
for with the given definition, the following important result holds:

Theorem 2.1 ([HI97, IR05, BS07]). For a Pisot number β, we have that x has
a purely periodic β-expansion if and only if x ∈ Q(β) and δ(x) ∈ X .
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0

Kf

1 K′

Q(0)
∂+Q(0)

∂−Q(0)

Figure 1. The two boundaries of the tile Q(0) for β = 1 +
√

3.

2.4. Hensel expansions of quadratic numbers. Throughout the rest of the
paper, we will fix arbitrary quadratic Pisot number β, root of β2 = aβ + b with
a ≥ b ≥ 1.

The map Pf is a homeomorphism (a bijection that is continuous both ways) from
Aω to Zb[β]f , where the alphabet is A := {0, 1, . . . , |N(β)| − 1}. Its inverse is the
Hensel expansion map h : Zb[β]f → Aω, whose fundamental property is that for
x ∈ Zb[β], the Hensel expansion h(x) = x0x1x2 · · · satisfies that

(2.2) x−
n∑

i=0

xiβ
i ∈ βnZb[β] for all n ≥ 0.

3. Beta-tiles and the value γ(β)

In §9.3 of the article [MS14], the boundary of β-tiles Q(0) and Q(β − a) is
described. The tiles have two boundaries: ∂+Q(x) on the right and ∂−Q(x) on the
left (see Figure 1). We have

∂+Q(0) = ∂+Q(β − a) =
{(

1 + P ′(u), 1f + Pf(u)
)

: u ∈ Aω
}
,

∂−Q(0) =
{(
β′ − a+ P ′(u), βf − af + Pf(u)

)
: u ∈ Aω

}
,(3.1)

∂−Q(β − a) =
{(
β′ − a+ 1 + P ′(u), βf − af + 1f + Pf(u)

)
: u ∈ Aω

}

(all these sets lie in K′). We can express the value of γ(β) easily in terms of the
boundaries:

Theorem 3.1. Let β be a quadratic Pisot number. Denote Y ′ := K ′ × (Z)f ⊆ K′
and put

(3.2) γ̄ := inf π2
(
∂+Q(0) ∩ Y ′

)
.

If supπ2
(
∂−Q(0) ∩ Y ′

)
> 0, then γ(β) = 0.

Otherwise if supπ2
(
∂−Q(β−a)∩Y ′

)
> β−a, then γ(β) = min{β−a,max{γ̄, 0}}.

Otherwise γ(β) = max{γ̄, 0}.
The decision tree of the theorem is summarized in Table 1

Proof. By Definition 1.1 and Theorem 2.1 we have that

γ(β) = inf
{
x ∈ Zb : x ≥ 0, δ(x) /∈ X

}
.
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A ≤ 0 A > 0
B ≤ β − a B > β − a B ≤ β − a B > β − a

γ̄ < 0 0 0 0 0
0 ≤ γ̄ < β − a γ̄ γ̄ 0 0
β − a ≤ γ̄ ≤ 1 γ̄ β − a 0 0

Table 1. To Theorem 3.1, the dependance of γ(β) on A :=
supπ2

(
∂−Q(0) ∩ Y ′

)
and B := supπ2

(
∂−Q(β − a) ∩ Y ′

)
.

The set {δ(x) : x ∈ Zb} is dense in Y ′ by [ABBS08, Lemma 4.7].
We see that the set {x ∈ Zb : δ(x) /∈ X} is dense in (γ̄,+∞), therefore if γ̄ ≤ 0,

we have that γ(β) = 0, and γ(β) ≤ γ̄ otherwise.
If A := supπ2

(
∂−Q(0)∩ Y ′

)
> 0, then the points {x ∈ Zb : δ(x) /∈ X} are dense

in the interval [0, A), therefore γ(β) = 0.
Consider now that A < 0. If γ̄ < β − a then {δ(x) : x ∈ Zb ∩ (0, γ̄)} ⊆ X

therefore (since we know that γ(β) ≤ γ̄) γ(β) = γ̄.
If γ̄ > β − a, certainly γ(β) ≥ β − a. If B := supπ2

(
∂−Q(β − a) ∩ Y ′

)
> β − a,

then the points {x ∈ Zb : δ(x) /∈ X} are dense in the interval (β − a,B), therefore
γ(β) = β − a. If B < 0, we get that {δ(x) : x ∈ Zb ∩ (β − a, γ̄)} ⊆ X , therefore
γ(β) = β̄. �

Remark 3.2. We can change Z in the statement of the theorem to Zb or to
Zb ∩ [c, d] for arbitrary c < d since we have that (Z)f = (Zb)f = (Zb ∩ [c, d])f .

Proof. We have that (Zb)f = (Zb ∩ [c, d])f by [ABBS08, Lemma 4.7]. Clearly
Z ⊆ Zb. We will prove that Zb ⊆ (Z)f . Let x/q ∈ Zb be given by x ∈ Z and
q ∈ (b)⊥. For each n ∈ N, the multiple inverse q−1 mod bn ∈ Z exists. Then
∣∣∣x
q
− (q−1 mod bn)x

∣∣∣
p

=
1

|q|p
∣∣x− (qq−1 mod bn)x

∣∣
p
≤ 1|x|p|bn|p ≤ |b|

n
p → 0

for all p | (β), therefore (q−1xmod bn)f → (x/q)f . �

For many cases, we obtain the following direct formula:

Corollary 3.3. Let β be a quadratic Pisot number, root of β2 = aβ + b for
a ≥ b ≥ 2. Suppose a > 1+

√
5

2 b or a = b or a ⊥ b. Then

(3.3) γ(β) = max
{

0, inf π2
(
∂+Q(x) ∩ Y ′

)}
.

Proof. Case a > 1+
√
5

2 b. According to (3.5) for n = 0 we have that

supπ2
(
∂−Q(β − a) ∩ Y ′

)
≤ β′ − a+ 1 +

b− 1

1− (β′)2
.
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We will show that the right-hand side of this equation is less than β − a. First, we
derive, using (β′)2 = aβ′ + b, β = a− β′ and 1− (β′)2 > 0, that it is equivalent to

(3.4) − a− ab− β′(a2 + a+ 2b− 2) < 0.

We know that β < a + 1, therefore −β′ = b
β >

b
a+1 , β = a − β′ > a(a+1)+b

a+1 and

−β′ = b
β <

(a+1)b
a2+a+b . As well, a

2 + a+ 2b− 2 > 0, therefore we estimate

−a− ab− β′(a2 + a+ 2b− 2) <
−ab2((ab )2 − a

b − 1)− b2((ab )2 + 2ab − 2)− 2b

a2 + a+ b
.

When a
b >

1+
√
5

2 , all three terms in the numerator are negative. This justifies that

supπ2
(
∂−Q(β − a) ∩ Y ′

)
≤ β′ − a+ 1 +

b− 1

1− (β′)2
< β − a.

Because β − a < 1, it follows easily that

supπ2
(
∂−Q(0) ∩ Y ′

)
≤ β′ − a+

b− 1

1− (β′)2
< 0.

Theorem 3.1 then implies the relation (3.3).
Case a = b. Take a = b > 3. Then b = (β′)2 + (b − 1)(β′)3 + (2b + 1)(β′)4,

therefore h(b) ∈ 001(b−1)Aω. We know that there exist letters a0, a1, · · · ∈ A such
that 001(b−1)0a00a1 . . . 0an ∈ L0 for all n. Therefore

γ̄ ≤ 1 + P ′(001(b−1)0a00a1 . . . 0an) + (β′)2n b−1
1−(β′)2

≤ 1 + P ′(001(b−1)) + (β′)2n b−1
1−(β′)2

n→∞−−−−→ 1 + P ′(001(b−1))

= 1 + (β′)2 + (b− 1)(β′)3.

For a = b > 4, we use the estimate −β′ ∈ ( b
b+1 , 1) to obtain that the right-hand

side is < 2− b3(b−1)
(b+1)3 . This means that γ̄ < 0, therefore γ(β) = 0. For a = b = 4, we

verify that the right-hand side is negative, namely ≈ −0.0193.
When a = b = 3, we verify that h(21) ∈ 001200020201Aω and using similar

arguments as above we obtain

γ̄ ≤ 1 + P ′(001200020201) ≈ −0.0726 < 0,

therefore γ(β) = 0.
When a = b = 2, we can follow the lines of the proof of the case a > 1+

√
5

2 b,
because we observe that (3.4) is satisfied, namely the left-hand side is ≈ −0.1436.

Case a ⊥ b. This case is proved in [MS14, §9]. �

For the boundary, we observe the following, which follows from the fact that the
boundary is continuous as a function from Z[β]f → K ′:



β-EXPANSIONS OF RATIONAL NUMBERS IN QUADRATIC BASES 41

Lemma 3.4. For every n ∈ N, we have that each of the boundaries ∂±(x) for
x ∈ {0, β − a} is contained in a union of rectangles,

∂+Q(x) ⊂
⋃

w∈An

(
1 + P ′(w) + (β′)n b−1

1−(β′)2 [β′, 1]
)
×
(
1f + Pf(wAω)

)
,

∂−Q(0) ⊂
⋃

w∈An

(
β′ − a+ P ′(w) + (β′)n b−1

1−(β′)2 [β′, 1]
)

(3.5)

×
(
βf − af + Pf(wAω)

)
,

∂−Q(β − a) ⊂
⋃

w∈An

(
β′ − a+ 1 + P ′(w) + (β′)n b−1

1−(β′)2 [β′, 1]
)

×
(
βf − af + 1f + Pf(wAω)

)
.

Proof. Follows directly from (3.1). For each n ∈ N and each u ∈ Aω we have that

P ′
(
w(0(b−1))ω

)
≤ P ′(u) ≤ P ′

(
w((b−1)0)ω

)
for n even,

P ′
(
w((b−1)0)ω

)
≤ P ′(u) ≤ P ′

(
w(0(b−1))ω

)
for n odd,

where w is a prefix of u of length n, therefore P ′(u) belongs to the interval with
endpoints

P ′
(
w(0(b−1))ω

)
= (β′)n+1 b−1

1+(β′)2 and P ′
(
w((b−1)0)ω

)
= (β′)n b−1

1+(β′)2 . �

Proposition 3.5. Let Ly for y ∈ Z[β] be the language of prefixes of Hensel
expansions of numbers from the set Z− y, i.e., Ly := Pref

{
h(k− y) : k ∈ Z

}
. Then

for each n ∈ N and x ∈ {0, β − a} we can estimate

inf π2
(
∂+Q(x) ∩ Y ′

)
∈ 1 + min

{
P ′(w) : w ∈ L0 ∩ An

}

+ (β′)n b−1
1−(β′)2 [β′, 1],

supπ2
(
∂−Q(0) ∩ Y ′

)
∈ β′ − a+ max

{
P ′(w) : w ∈ Lβ ∩ An

}
(3.6)

+ (β′)n b−1
1−(β′)2 [β′, 1],

supπ2
(
∂−Q(β − a) ∩ Y ′

)
∈ β′ − a+ 1 + max

{
P ′(w) : w ∈ Lβ ∩ An

}

+ (β′)n b−1
1−(β′)2 [β′, 1].

Proof. First, we observe that since (Z)f = (Zb)f , we have that Ly = Pref{h(z− y) :

z ∈ Zb}. Let z ∈ (Z)f be the β-adic height at which the infimum is attained, i.e.,
such that

(
inf π2(∂+Q(x) ∩ Y ′), z

)
∈ ∂+Q(x). �

The right-hand sides of (3.6) are itervals whose lengths shrink exponentially as
n→∞. The only remaining step is to construct the languages Lx ∩ An, which is
solved by the following statement:

Proposition 3.6. Let x, z ∈ Z[β] satisfy that x− z ∈ bnZ for some n ∈ N. Then
the Hensel expansions h(x) and h(z) have a common prefix of the length at least n.

Therefore all elements of Ly of the length n are precisely

Ly ∩ An = Pref
{
h(k − y) : k ∈ {0, 1, . . . , bn − 1}

}
∩ An,(3.7)
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a/b = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 ? 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1
5 0 ? ? ? 1 1 1 1 1 1 1 1 1 1 1
6 0 ? ? 1 1 1 1 1 1 1 1 1 1 1 1
7 0 ? ? ? ? ? 1 1 1 1 1 1 1 1 1
8 0 ? ? ? ? ? ? 1 1 1 1 1 1 1 1
9 0 ? ? ? ? ? ? ? 1 1 1 1 1 1 1

10 0 ? ? ? ? ? ? ? ? 1 1 1 1 1 1
11 0 0 ? ? ? ? ? ? ? ? 1 1 1 1 1
12 0 0 ? ? ? ? ? ? ? ? ? 1 1 1 1

Table 2. The values of γ(β) for the case when b divides a. The
star ‘?’ means that the value is strictly between 0 and 1.

whence

#(Ly ∩ An) ≤ bn.(3.8)

Proof. Since b = β2 − aβ ∈ βZ[β], we have that x − z ∈ βnZ[β]. Let h(x) =

x0x1 · · ·xn−1 · · · . Then x−
∑k−1
j=0 xjβ

j ∈ βnZ[β] and therefore z −∑k−1
j=0 xjβ

j ∈
βnZ[β], which means that x0 · · ·xn−1 is a prefix of h(z). �

4. The case b divides a

In the particular case when b divides a, the structure of Ly is even simpler,
namely we have that #(Ly ∩An) = bdn/2e, therefore #(Ly ∩A2n) = #(Ly ∩A2n−1).
This is given by the fact that in this case, bkZ[β] = β2kZ[β]. The result for this
case can be stated as follows:

Theorem 4.1. Let β be a quadratic Pisot number, root of β2 = aβ + b with
a ≥ b ≥ 2 and a

b ∈ Z.
We have that γ(β) = 1 if and only if a ≥ b2 or (a, b) ∈ {(6, 24), (6, 30)}.
If a = b ≥ 3 then γ(β) = 0.
If b ≤ a ≤ b(b− 1) then γ(β) can be computed with arbitrary precision.

The two cases β2 = 24β + 6 and β2 = 30β + 6 are very exceptional. It is given
by the fact that for them, we have that b− (a/b) divides b, which is an important
ingredient in their strangeness. Table 2 shows whether γ(β) is 0, 1 or strictly in
between, for b ≤ 12 and a/b ≤ 15. The first non-trivial values are listed in Table 3.

Proposition 4.2. Let β be the dominant root of β2 = cbβ + b with b ≥ 2 and
c ≥ 1. Let x, z ∈ Z[β] satisfy that x− z ∈ bnZ for some n ∈ N. Then the Hensel
expansions h(x) and h(z) have a common prefix of the length at least 2n.
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a b γ(β)

2 2 0.914803044196 · · ·
6 3 0.992963560101 · · ·
8 4 0.933542944675 · · ·
12 4 0.999897789000 · · ·
10 5 0.834150794175 · · ·
15 5 0.995306723671 · · ·
20 5 0.999999907110 · · ·

a b γ(β)

12 6 0.736114178272 · · ·
18 6 0.993897266395 · · ·
14 7 0.584906533458 · · ·
21 7 0.944526094618 · · ·
28 7 0.997984788082 · · ·
35 7 0.999986041767 · · ·
42 7 0.99999999999971 · · ·

Table 3. Numerical values of γ(β), where β2 = aβ + b, that
correspond to the first couple ‘?’ in Table 2.

Therefore all elements of Ly of the length 2n are precisely

Ly ∩ A2n = Pref
{
h(k − y) : k ∈ {0, 1, . . . , bn − 1}

}
∩ A2n(4.1)

and

#(Ly ∩ A2n) = #(Ly ∩ A2n−1) = bn.(4.2)

Proof. We have that β2 = b(cβ + 1) ∈ bZ[β] and b = β2 − c(1 + cb)β3 + cβ4 ∈
β2 + β3Z[β] ⊆ β2Z[β], whence β2Z[β] = bZ[β] and also β2nZ[β] = bnZ[β] for all
n ∈ N. By the same argument as in the proof of Proposition 3.6 we obtain (4.1),
therefore #(Ly ∩ A2n) ≤ bn.

We will show that the equality is true by showing that #(Ly ∩ A2n+2) ≥
b#(Ly ∩ A2n+2).

Let h(x) = x0x1 . . . x2nx2n+1x2n+2 . . . and h(z) = x0x1 . . . x2nz2n+1z2n+2 . . .
be the Hensel expansions of x and z, respectively. Put

x̃ =
1

β2n

(
x−

2n−1∑

j=0

xjβ
j

)
and z̃ =

1

β2n

(
z −

2n−1∑

j=0

xjβ
j

)
.

Let m = (z − x)/bn. Then z̃ − x̃ = mbn

β2n ∈ m+ βZ[β]. Since x2n and z2n are the
first digits of expansion of x̃ and z̃, repsectively, we obtain that z2n − x2n ≡ m
(mod b). Since m can take any integer value, all the strings x0x1 . . . x2n−1a for
a ∈ A are in Ly. Therefore each element of Ly∩A2n has exactly b prolongations and
#(Ly ∩A2n+1) = b#(Ly ∩A2n). Whence and #(Ly ∩A2n+2) ≥ #(Ly ∩A2n+1) =
b#(Ly ∩ A2n). �

Lemma 4.3. Let β2 = aβ + b with a ≥ b ≥ 1. Then

(b− 1) + (a− b+ 1)β′ > 0 if and only if a < b2.
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Proof. If a ≥ b2 then 1
β <

1
a ≤ 1

b2 . Together with the fact that β′ = b
β we get that

(b−1)− (a− b+1)β′ = (b−1)− (a− b+1)
b

β
< (b−1)− (b2− b+1)

b

b2
= −1

b
< 0.

If a ≤ b2 − 1 then 1
β >

1
a+1 ≥ 1

b2 . Whence

(b− 1)− (a− b+ 1)β′ = (b− 1)− (a− b+ 1)
b

β
> (b− 1)− (b2 − 1− b+ 1)

b

b2
= 0.

This completes the proof. �

Proposition 4.4. Let β be a quadratic Pisot number, root of β2 = aβ + b with
b ≥ 2, ab ∈ Z and a ≥ b2. Then γ(β) = 1.

Proof. Since h(0) = 0ω, we have that h(Z) ⊆ 0ω ∪ ⋃n≥0(00)n{1, . . . , b − 1}Aω
Using Corollary 3.3 and Proposition 3.5 we obtain that

γ(β) ≥ inf π2
(
∂+Q(0) ∩ Y ′

)
= 1 + inf

{
P ′(w) : w ∈ h(Z)

}

≥ 1 + inf
n≥0

inf
{
P ′(w) : w ∈ (00)n{1, . . . , b− 1}Aω

}

= 1 + inf
n≥0

(β′)2n inf
{
P ′(w) : w ∈ {1, . . . , b− 1}Aω

}
.

With the help of Lemma 4.3 and since β′ < 0, we compute

inf
{
P ′(w) : w ∈ {1, . . . , b− 1}Aω

}
= P ′

(
1(b−1)(0(b− 1))ω

)

= 1 +
(b− 1)β′

1− (β′)2
= 1 +

(b− 1)β′

−aβ′ + (b− 1)
≥ 1 +

(b− 1)β′

(1− b)β′ = 0.

Altogether, γ(β) ≥ 1 + infn≥0 0 = 1. From the definition we have that γ(β) ≤ 1,
therefore γ(β) = 1 as desired. �

Proposition 4.5. Let β1 and β2 be the Pisot roots of β2
1 = 24β1 + 6 and β2

2 =
30β2 + 6, respectively. Then γ(β1) = γ(β2) = 1.

Proposition 4.6. Let β be a quadratic Pisot number, root of β2 = cbβ + b with
b ≥ 2 and 1 ≤ c < b. Suppose (b, c) 6= (6, 4) and (b, c) 6= (6, 5). Then γ(β) < 1.

Proof. Assume that 1 ≤ c < b, with c /∈ {4, 5} if b = 6, and let k = dc/(b − c)e.
The Hensel expansion h(bk) starts with 02k1(kb−kc). If c/(b − c) /∈ Z, then we
have k(b − c) > c and thus 1 + (kb − kc)β′ ≤ 1 + (c + 1)β′ < 0, using that
β′ = −b/β < −b/(cb + 1) ≤ −1/(c + 1). This proves that γ(β) < 1 if c is not
a multiple of b− c.

Assume now that c/(b− c) ∈ Z, i.e., k = c/(b− c). Then we have

bk ∈ β2k
(

1− kcβ +
(
k+1
2

)
c2β2 −

(
k+2
3

)
c3β3 + β4Z[β]

)

= β2k
(

1 + cβ +
(
k+1
2

)
c2β2 −

(
k+2
3

)
c3β3 − kβ3 + β4Z[β]

)
,
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where we have used that kbβ − kβ3 ∈ β4Z[β], thus bk+1 ∈ β2k+1(1 + β2Z[β]), and

bk −
(
k+1
2

)
c2bk+1 ∈ β2k

(
1 + cβ −

(
k+2
3

)
c3β3 − kβ3 + β4Z[β]

)
.

Since β < cb+ 1 ≤ b2, we have

1 + cβ′ + (β′)3 = (β′)2/b+ (β′)3 = (β′)2
β − b2
bβ

< 0.

This implies that γ(β) < 1 if
(
k+2
3

)
c3 + k is not a multiple of b.

It remains to consider the case that
(
k+2
3

)
c3 + k ≡ 0 mod b, i.e.,

k ≡ −bk(k + 2)

6
c2k mod b.

Multiplying by b− c gives

c ≡ −bk(k + 2)

6
c3 mod b.

Note that bk(k+2)
6 = (b− c)

(
k+2
3

)
∈ Z. We dinstinguish four cases:

• If 6 ⊥ b, then c ≡ 0 mod b, contradicting that 1 ≤ c < b.
• If 2 | b and 3 - b, then c is a multiple of b/2, i.e., c = b/2, k = 1. As k is

also a multiple of b/2, we get that b = 2, thus c = 1. For β2 = 2β + 2, we
already know that γ(β) < 1.

• If 3 | b and 2 - b, then c and k are multiples of b/3. Since k ∈ Z, we must
have c = 2b/3, i.e., k = 2. As 2 - b, we obtain that b = 3, thus c = 2, and(
k+2
3

)
c3 + k 6≡ 0 mod b.

• If 6 | b, then c and k are multiples of b/6, thus c ∈ {b/2, 2b/3, 5b/6},
k ∈ {1, 2, 5}. If k = 1, then b = 6, thus c = 3, and

(
k+2
3

)
c3 + k 6≡ 0 mod b.

If k = 2, then b ∈ {6, 12}; we have excluded that b = 6, c = 4; for
b = 12, c = 8, we have

(
k+2
3

)
c3 + k 6≡ 0 mod b. If k = 5, then b ∈ {6, 30};

we have excluded that b = 6, c = 5; for b = 30, c = 24, we have(
k+2
3

)
c3 + k 6≡ 0 mod b. �

Proof of Theorem 4.1. The case γ(β) is treated in Propositions 4.4, 4.6 and 4.5.
The case a = b ≥ 3 in Corollary 3.3, where we prove that γ(β) = 0.

We can compute γ(β) with arbitrary precision will the help of Theorem 3.1. All
three values mentioned in this theorem are estimated using Proposition 3.5, where
elements of Ly are enumerated using Proposition 3.6. �

Example 4.7. As an example, we will show the computation of γ(β) for β = 1+
√

3,
the Pisot root of β2 = 2β + 2. Since b divides a, we know that we can choose every
even digit and the even digit is then given uniquely. This allows us to consider shorter
intervals than the ones in Lemma 3.4, namely, [1+P ′(w)+(β′)2n+1 b−1

1−(β′)2 , 1+P ′(w)]

for a prefix w of the length 2n.



46 T. HEJDA AND W. STEINER

0 1
ε

00 10
00 00 00 11

00 00 00 00 00 1000 11 00 00 11 10
00 00 00 00 00 00 00 1100 11 00 01 00 11 00 10
00 00 00 00 00 00 00 00 00 1000 00 00 11 00 00 00 00 11 1000 11 00 01 01 00 11 00 01 11
00 00 00 00 00 00 00 00 00 00 00 1100 11 00 01 01 01 00 11 00 01 01 10

00 11 00 01 01 01 01 00 11 00 01 01 10 11
00 11 00 01 01 01 01 00 00 11 00 01 01 10 01 11

00 11 00 01 01 01 01 00 01 00 11 00 01 01 10 01 00 1100 11 00 01 01 01 01 11 00 00 11 00 01 01 10 01 11 11

Figure 2. The computation of γ(1 +
√

3). By a thick line we
denote the intervals that we keep, by a thin line the ones that we
‘forget’.

The computation is shown in Figure 2. We start with the interval for the empty
word, which is

[
1− β′(b−1)

1−(β′)2 , 1
]
. We then take the two values 0, 1 for the digit x0;

the digit x1 is fixed by this and we get the two prefixes 00, 10 ∈ L0. However, the
interval for 10 does not overlap the left-most interval (the one for 00 in this case),
therefore we can ‘forget’ it. In each step, we then extend the length of the prefixes
by two and we ‘forget’ the intervals that do not overlap the left-most one. The
value of γ(β) lies in the left-most interval. Already in the 5th step we obtain that
γ(β) ∈ [0.922, 0.971] therefore it is strictly between 0 and 1.
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