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Abstrakt:
Moebiovské numeracni systémy piedstavuji velmi obecnou konstrukei nu-
meracnich systémt zahrnujici nejvyznamnéjsi z nich — pozic¢ni systémy a
fetézové zlomky. Tato konstrukce je vyhodna predevsim proto, Zze umoznuje
dobrou geometrickou interpretaci a soucasné je algebraickd — numeracni
systém je vzdy podmnozina konecné generované grupy. V této praci se za-
byvame existenci numerac¢nich systémt, jejichz grupa je diskrétni a je gene-
rovana racionalnimi Moebiovskymi transformacemi, tedy linearnimi ¢i line-

arné lomenymi funkcemi s raciondlnimi koeficienty.
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Abstract:

The theory of Mobius numeration systems brings a general construction of
numeration systems, including the most studied ones—positional numera-
tion systems and continued fractions. The advantages of this construction
are a good geometrical exposition and an algebraic approach—numeration
system is a subset of a finitely-generated group. This thesis investigates
the existence of numeration systems such that the corresponding group is
discreet and is generated by rational Mobius transformations, i.e. linear or
linear-fractional functions with rational coefficients.

Keywords: numeration systems, Fuchsian groups, Mobius

transformations, rational Mobius transformations



s velkym podékovanim mému trpélivému Skoliteli






Contents



Contents

List of Figures and Tables

1 Introduction
2 Mdébius number systems
2.1 Combinatoricson words . . . . . . . ... ... .. .....
2.2 Mobius number systems . . . . ... ...
3 Hyperbolic geometry
3.1 Hyperbolicmodels . . . .. ... ... ... ... ...
3.2 Mobius transformations in hyperbolic geometry . . . . . . .
3.3 Expansion area and isometric circle . . . . . . ... ... ..
4 Fuchsian groups
4.1 Ford fundamental domains . . . . . . . . ... ... ... ..
4.2 Sides of Ford fundamental domain . . . .. ... ... ...
5 Rational groups with a bounded fundamental domain
5.1 Groups with elliptic elements . . . . . ... ... .. ....
5.2 Program for the Diophantine system . . ... ... ... ..
6 Conclusions
6.1 Openproblems . . .. ... ... ... . ... ........
Bibliography

Index of Notations

General Index

13
14
15
17

25
28
34

41
42
47

51
52

54

58

62



List of Figures and Tables



List of Figures and Tables

Remark. Even though we do most of the computations in the upper
half-plane model U, we draw most of the figures in the disc model
D since in this model the hyperbolic space is represented by a
bounded area in the complex plane. For details, see Remark 3.1.

Fig. 3.1 An arrangement in the hyperbolic geometry, drawn in the
upper half-plane model and the disc model. . . . . . . . .. 15
Fig. 3.2 The isometric circle and the expansion area for a transfor-
mation z—4z. ... 19
Fig. 3.3 Isometric circles of M and M ~! and their line of symmetry
in the disc model L—the ellipticcase. . . . . . ... .. .. 21
Fig. 3.4 To the proof of Proposition 3.11.. . . . . . . . .. ... .. 22

Fig. 4.1 A fundamental domain and its images for the modular group. 27
Fig. 4.2 A fundamental domain and its images for the group from

Example 4.5. . . . . ... oo 28
Fig. 4.3 Different generalized Ford fundamental domains for the

modular group. . . . . ... 31
Fig. 4.4 The expansion area V (M), the set @)1 and the set F;(Q1). 32
Fig. 4.5 A pre-Ford domain for { My, My, ]\41_17 MQ_I} given by (4.3)

and its images under elements of the group (M7, Ms) of the

length up to 5 (cf. Remark 4.14). . . . .. ... ... ... 33
Fig. 4.6 Side pairings of the different generalized Ford fundamen-

tal domains for the modular group and the corresponding

graphs Gp on the vertices of the domains (cf. Example 4.17). 35
Fig. 4.7 To the proof of Theorem 4.18, to illustrate the ‘+’ sign in

the sumof angles. . . . . . .. ... ... oL 36
Fig. 4.8 An example of a domain with 6 sides and a cycle in the

graph Gp of the length 4 (left) and the whole graph Gp

(right) (cf. Theorem 4.18). . . . . . . ... .. ... .... 37
Fig. 4.9 The pre-Ford domain P from Example 4.21 and the graph
Gp. The inner angles are all equal to 27/5. . . . . . . . .. 39

Tab. 5.1 The significant values of the trace of a Mobius transfor-
mation. . . . . ... 42

Tab. 5.2 The examples of M7, My such that the elements of their
matrices Ay, and Ay, solve some of the conditions. . . . 46



CHAPTER 1

Introduction



Chapter 1. Introduction

This thesis treats some aspects of the Mobius number systems. Mobius
number systems provide a general view on different kinds of numeration sys-
tems; in general any system based on linear and linear fractional transfor-
mations with the positive derivative. These include positional numeration
systems, for instance the decimal and binary systems, in both redundant
and non-redundant variants, but as well the Rényi systems [Rén57] with

w_»

non-integer base. Continued fractions, when using the sign in the frac-
tions instead of “4”, can be considered as a Mobius number system as well.
Various properties and examples of Mobius number systems are given in
[Kur08, Kur09b, KK10, Kurl12, Karll]. In the thesis, we are concerned
about systems such that their transformations form a group.

In Chapter 2, we introduce the theory of Mobius number systems.

We view groups of transformations as groups of homeomorphisms of the
hyperbolic plane, where the hyperbolic plane is represented as the upper
complex half-plane; this is the contents of Chapter 3.

Fuchsian groups are discrete groups of transformations. Chapter 4 com-
prises the overview of these groups, some examples and some new results.

In Chapter 5, we are concerned with the groups of transformations with
rational coefficients, we conjecture that no discrete groups of such transfor-
mations with an additional restriction on a boundedness of its fundamental
domain exists and we explain the complications of the proof.

Chapter 6 contains the conclusions of the thesis.

The historical notes at the chapters’ titles are taken from [wikil, wiki2,
wiki3, wiki4, wiki6, wiki7, wwwl].



CHAPTER 2

Mobius number systems

August Ferdinand Mobius (1790-1868)
German mathematician and theoretical astronomer, introduced the
concept of homogeneous coordinates
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Chapter 2. Mobius number systems

We introduce the theory of Mébius number systems as is it introduced
and studied in [Kar08, Kur09b, KK10]. To do so, we need some notions
from the theory of combinatorics on words.

Combinatorics on words

Let A denote a finite alphabet with #.A4 > 2, let AT :=J,,»; A" be the set
of finite non-empty words over the alphabet A. If we add the empty word
A, we get the set of all finite words over alphabet A and we denote it by A*.
For a finite word u = ug...up—1 € A" we denote |u| := n its length. The
Cantor space of infinite words is denoted by AN and is equipped with the
metric d(u,v) = 2% with & € N being the first position where the words
u,v € AV differ.

The set of words is naturally equipped with the operation of concate-
nation of words, which can be naturally extended to concatenating the sets
of words, for instance, UV = {uv | u € U,v € V'} for arbitrary set of finite
words U and set of finite or infinite words V.

A word f € A* is called a factor of a word u € A* U AN, if there exists
words x,y such that v = x fy, we denote this relation f C u. A factor is
called prefiz if x = X and suffix if y = A. All factors are considered finite.
The set of all the factors of u is called language and is denoted by L(u).
The language of any set of words is the union of languages of each of the
words.

If u = zv for some z € A* and u,v € AV, then v is called an infinite
suffiz or tail of the word wu.

A morphism ¢ : A* — B* is a map such that ¢(uv) = p(u)p(v) for
all u,v € A*. This means that a morphism is given by the images of the
letters of A. Any such morphism can be naturally extended to a map AN —
BY putting @(uouius...) = @(ug)p(ui)e(us).... A morphism is called
substitution if p(a) # A for all a € A. Every substitution is continuous.

A cylinder of a finite word u € A* is a set of infinite words with a prefix

[u] = uA = {uv lve AN

The cylinder is a clopen set, i.e., both open and closed, with respect to the
metric d, which means that any finite union or intersection of cylinders is
clopen, as well as the image of a cylinder under any substitution.

We define a shift map o : AN — AY as o(uguiugus...) = ujugus. ..
We say that a set ¥ C AN is a subshift if ¥ is closed and o-invariant. The
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whole set AN is a subshift and it is called full shift.
A subshift ¥ is called subshift of finite type (abbreviated SFT), if there
exists a finite set X C A* of forbidden words such that

z:{ueAN],c(u)mX:@}.

Every finite set X defines a subshift ¥ x by this equality.

More details on combinatorics on words can be found for instance in

[Lot02].

Mo6bius number systems

Definition 2.1. An orientation-preserving real Mdbius transformation M :

C — C is any map of the form

az+b
cz+d’

M(z) = (2.1)
where a,b,c,d € R and ad — bc > 0.

The set of all orientation-preserving real Mobius transformations is de-
noted by MM(2,R). A transformation given by parameters a,b, c,d will be

denoted Mg p ¢ 4.

Later, in Section 3.2, we will see that (2, R) is a group and we will
study more properties of Mobius transformations.

Definition 2.2. Let F': A — 9M(2,R) be a system of orientation-preserving
Mobius transformations F;, : C — C such that F,, = F, o F,, which is given
by generating MTs F,, a € A. We say that F' is a Mdbius iterative system.

The convergence space Xp C AN and the symbolic representation ® :
Xy — R are defined as

Xp = {uEAN

lim P, (i) € R},
n—oo ’
O(u) = nlggo Fug, (0),

where ¢ € C is the imaginary unit.

Let ¥ C Xp be a subshift. We say that a pair (F,X) is a Mdbius number
system if ®(X) = R and ® is continuous. It is said to be redundant if for
every continuous map g : R — R there exists a continuous map f : ¥ — 2
such that @ f = g®.

2.2.
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Definition 2.3. Let G be a group generated by the elements (g1, g2, - - ., gk)-
For any element h € G we define its length to be the length of the shortest
word w = wow; - - wp—1 over the (2k)-letter alphabet A := {1,2,... k} U
{=1,-2,...,—k} such that h = guyGuy - Gu,_1; We put g_x = g; . The
length is denoted by leng, g, 4. ().

Example 2.4 (Rényi positional system). Let us fix § € R, 8 > 1,
denote b := [B] — 1. Let A ={-b,-b+1,...,—1,0,1,...,b0—1,b} U{t}.
Let Fy(z) = % for a # 4, and let Fy(z) := [z be the generating MTs for
a Mobius iterative system F. Let

5= {0 U U0 ({=b,..., —1}{-b,....0} N U{L,...,0}{0,....0}"),

i.e. ¥ contains a word " and then words comprising either only non-positive
or non-negative digits, and with any finite number of #’s in front of the word.
This ¥ is an SFT with forbidden words

X ={t0yU{at| a € {-b,...,0}} U{ad" | a,d’ € {~b,...,b},a-a’ <0}.
All words u € ¥ have the form u = #*ajagaz--- or w = #. The
symbolic representation has then a prescription

d(tFaragas - -+ ) = g* i and ®(Y) = oco.
j=1

aj
37

This system is in correspondence with Rényi expansions [Rén57]. Rényi
defined the positional numeration systems on the interval [0,1) with the
alphabet {0,1,...,[3] — 1} and proved that every x € [0,1) has a repre-
sentation. Using the negative digits, we extend the domain to (—1,1), and
using the transformation Fj : z — [z arbitrarily many times allows repre-
sentation of all real numbers. The word Y represents co. This means that
(F,X) is a Mobius number system.

Example 2.5 (Continued fractions). One of the representations of real
numbers is using simple continued fractions. Every x € R can be expressed
in the form of a finite or infinite fraction of the form

1

T =ap+
ay +
ag + ——
az +
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with agp € Z and a;, € N~ {0} for £ > 1. An irrational number is expressed
by a uniquie simple continued fraction, a rational number can be expressed
by exactly two finite simple continued fractions.

We can modify this definition to obtain alternating continued fractions

of the form

1
r=ay— (2.2)

al —

ag —

as —

with ag € Z and a, € Z ~ {0} and ag_1a; <0 for £ > 1.

Let A := {1,0,1} and put Fy(z) = —1/z, Fi(z) == 2+ 1 and Fy(z) ==
z—=1=F] (). Then x with a continued fraction (2.2) has a representation
1900110192010 - - -, where we identify 177 = ith

Rational numbers have finite continued fractions, which have to be
rewritten to infinite words. The fraction of the form

1
r = ayg—
a] —
1
1
Ap—2 —
an—1
can be rewritten to
1
Xr = ap — )
al —
1
1
ap—2 — 1
Ap_1 — ——
" +oo

hence z has a representation 17001910 - - - 0197-201%-10b", where b = 1 for
ap—1 <0and b=1 for a,_; > 0.

The set of all such representations is SF'T > x with the forbidden words
X = {00,11,11,101,701}. The infinite words 1V and T are not excluded
and they both represent cc.

We can see that the transformations of the system (F, ¥ x) form a group.
For, we have Foo = Fy1 = Fy; = Id, Fio1(2) = 57 = Fyqo(2) and Fygp(z) =

11
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— = Fo10(2). We can summarize this by a list of rewriting rules, applying

which we can convert any u € A* to some v’ € X x with F,, = F,:
00 — X; 11+ X; 11+ X; 101 — 010; 101 ~ 010.

Since (1) the first three rules diminish the length of the word; (2) the last
two rules lower the number of occurences of 1 and 1; (3) the number of
occurences of 0 is at most equal to one plus number of occurences of 1 and
1 (because 00 is forbidden); we get that the rewriting must terminate after
finitely many steps.

Later in Chapter 4 we will see that this group is called modular group.



CHAPTER 3

Hyperbolic geometry

Jules Henri Poincaré (1854-1912)
French “polymath”, introduced two models of the hyperbolic geometry
that have been named in his honor
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Chapter 3. Hyperbolic geometry

Euclid, in his treatise Elements, proposed 5 axioms of geometry, now being
called Euclidean. The 5th axiom, so called “parallel postulate”, says:

a That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles. 77

Many mathematicians had thought that this axiom could have been
omitted because it could be proven from the previous 4 ones. There were
various attempts to prove the parallel postulate as well as to find its alter-
native. The discussion was ended by works of Lobachevsky, Gauss, Bolayi
and Poincaré during the 19th century.

Hyperbolic models

Hyperbolic geometry is a non-Euclidean geometry such that through a given
point, there exist more than one parallel line to every line. We use the
Poincaré half-plane model and the Poincaré disc model. For a deeper study
of the hyperbolic geometry, see [Bea95].
Denote U = {z eC ‘ Sz > O} the upper half plane, and OU = RU{o0}.
If we identify U with real pairs {(z,y) € R? } y > 0} putting z = z + iy,
then the hyperbolic metric on the half-plane is given by
- da? + dy?
= "
We define the hyperbolic straight line passing through points 2, 22 in the

ds? (3.1)

model as the geodesic, i.e. curve connecting these points such that it has
the shortest length measured by (3.1). We denote such line [21, 23] and
its hyperbolic length p(z1,22). It can be shown that these geodesics are
parts of half-circles perpendicular to OU or half-lines starting on 0U and
perpendicular to 0U. We can extend the definition of a geodesic to the
situation when z; or zs lies in JU; in this case, the geodesic has an infinite
hyperbolic length.
Denote D := {z € C | |2| = 1} the unit disc and 9D == {z € C | |2| < 1}
its boundary. Using map d : UU 0U — D U 9D,
1z +1 .
d(z) = R d(oc0) =14, (3.2)
we can define the disc model. The geodesics in this model are circular arcs

perpendicular to D and straight lines passing through the origin. The map

(3.2) is conformal, i.e. it preserves angles between curves.



3.2. Mbobius transformations in hyperbolic geometry

An arrangement in the hyperbolic geometry, drawn in

the upper half-plane model (left) and the disc model

(right). The drawing on the right illustrates the way how

all the following figures in hyperbolic geometry will be
drawn, cf. Remark 3.1.

1/0
—4/1 4/1
-3/1 3/1
-2/1 2/1
-3/2 3/2
-4/3 4/3
-1/1 . 1/1
-3/4 3/4
-2/3 2/3
-1/2 1/2
| | | | | |
-47T -3/ -2/T -1/ 0/1 1/T 2/T 3/1 /1 *1/_31/4 1/41/3

0/1

Remark 3.1. We need to clarify the way we will draw all figures of ob-
jects in the hyperbolic geometry. The complication is that we identify the
boundary OU of the geometry with real numbers R using the upper half-
plane model U, but this model is unbounded so we cannot really draw it.
Therefore we use the disc model D = d(U), 0D = d(9U) for all the figures.
However, we label all the points in the figures as points of the upper half-
plane model, i.e. we label for instance the middle of the disc as i, since it is
0 =d(i), see Figure 3.1 for an example.

The hyperbolic metric defines a topology on both U and U U 9U.

Definition 3.2. Let Q C U. We denote @ the closure of () with respect to
the topology on U.

Let Q@ C UUOU. We denote @ the closure of () with respect to the
topology on U U 90U.

Mobius transformations in hyperbolic
geometry

Mobius transformations, as defined by (2.1), are conformal isometries of the
hyperbolic plane U. A map is conformal if it preserves the angles between

curves. A map is an isometry of a metric space, if it is a bijection of this

15

Figure 3.1.

3.2.
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space and preserves the metric. This means that Mobius transformations
map U — U and we have already seen that they map U — 0U. Because
of this, we will treat them as maps U U 0U — U U JU.

Definition 3.3. The group GL™(2,R) comprises all real 2 x 2 matrices with
a strictly positive determinant.
Then we put
PGL"(2,R) := GL(2,R)/ ~,

where A ~ B if and only if there exists A € R\ {0} such that A = AB.
In the thesis we treat all matrices as elements of the group PGL™*(2,R),
i.e. we identify a matrix A with a matrix AA for arbitrary A € R . {0}.

To a Mobius transformation M, .q we assign a matrix A, = (‘Cl 3) €
PGL™(2,R). This assignment is reasonable as matrices A and AA for A # 0
correspond to the same Mobius transformation, and the only real matrices
that correspond to the same transformation as A are its multiples. We

/ b / bl bd/ .
shall see that My pca(Ma v ot (2)) = Ezg'idz';ziEZb'idd’g’ which means that
Ayyvr = ApAyp. The inverse matrix to A = (‘CZ Z) is a matrix A7l =

(42

) (we omit the factor ﬁ here because it does nothing in the sense
of the group PGL™(2,R)). We see that a map M ~— A} is an isomorphism
(M(2,R),0) — (PGL*(2,R),-). Because PGL"(2,R) is a group, we get
that MM(2,R) is a group, called Mébius group.

In the disc model, the orientation-preserving Mobius transformation is
given by
M(z)=doMod !(z).

The matrix of such orientation-preserving Mobius transformation is of the
form

Aﬁz(gg) with «,8€C and |a|>|4].

We classify MTs according to their fixed points. We say that M is:
(1) elliptic—if M has a unique fixed point in UT;
(2) parabolic—if M has a unique fixed point in 9U;

(3) hyperbolic—if M has exactly two fixed points in 9U.

TElliptic M, treated as a map C — C instead of UU 8U — U U dU, has another fixed
point, that lies outside of U.
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It can be shown that there are no other cases. We denote s); the unique fixed
points of elliptic and parabolic transformation. Hyperbolic transformations
have one stable fixed point s;; and one unstable fixed point ;.

The angle of rotation of an elliptic M is the angle between the geodesics
[sar, 2] and [spr, M(z)] for arbitrary z € U, z # s). We denote this angle
rot M. The angle is signed (oriented) with the same orientation as in the
complex plane.

A trace of a matriz is a sum of its diagonal elements. Based on this,

tr2 Ay atd)?
dot Ay = (a d_gc. We define only

the square of the trace, because we need the trace to be invariant under the

we define trace of an MT as tr’ M =

map A — AA and this is the simplest and most common way to achieve
this invariancy.
Using the trace, we can easily distinguish the classes od MTs by their

matrices.

Proposition 3.4 ([Bea95, Theorem 4.3.4]). Let M be an orientation-
preserving Mobius transformation. Then M is:

(1) elliptic if and only if tr> M < 4;
(2) parabolic if and only if tr?> M = 4;
(3) hyperbolic if and only if tr> M > 4.

The angle of rotation of an elliptic MT satisfies

rot M
tr?> M = 4 cos? .

We are concerned about so-called rational Mobius transformations, i.e.
transformations with rational coefficients. We have already seen that Ma =
My a; the choice of A equal to the product of the denominators of the co-
efficients shows that any rational Mobius transformation can be expressed
as a transformation with integer coefficients. Since the inverse of a rational
matrix is again rational, we get that rational orientation-preserving MTs
form a subgroup of all orientation-preserving MT’s denoted by (2, 7Z).

Expansion area and isometric circle

For defining expansion area and isometric circle, we will use the derivative

of the Mdobius transformation in the disc model, which is preferable due

17

3.5.
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to its symmetries. For an MT M = Mj, we define a circle derivative
M?® : UU9U — (0,00) as the modulus of the Euclidean derivative in the
disc model:

aa — f3f

= (Bd(z) + a)(Bd(z) + @)

where (g g) = AM. For z € R we have

(ad — be)(2% + 1)

M*(z) = (az +0)2 + (cz +d)?

We define M*(c0) as a limit, which gives M®(co0) = ad=b¢

a?+c?’
Using the circle derivative, we define the isometric circle as the area

where M acts as an Euclidean isometry:
I(M)={2€U0uU0U | M*(z) =1}.
Moreover, we define the expansion area
V(M) :={2€UUdU| (M ")) >1}.
(Notice that the definition of V(M) uses the inverse of M.)

Proposition 3.5. (1) For M that fixesi (i.e. M fixes 0), we have I(M) =
UUIU and V(M) = 0.

(2) For any other M, the isometric circle is, when drawn in the disc model,
an arc of a circle with the center c); and radius r); which can be

computed from the matrix A; = (% g) as

ey =—a/B and 7y =/ \CM\2 - 1; (3.3)

this circle is perpendicular to 0D hence it is a geodesic. The expansion
area V(M) is the interior of the isometric circle of M~*.

Proof. (1) We have 0 = 225 if and only if 5 = 0. Then M(z) = ¢z and

B0+a
‘]\/4\(2)’ =1 for all z € C.

(2) We have M(z) = aa—fp , from whence it follows ‘]\/4\(2')’ ; 1

(Bz+a)?
_ 19 2
Bz +al” S laf? — 18P = |z-(-9)
=1 is a circle with center cj; = —% and radius ry; =

<~

2
;%— . So the set

where ’]/\/I\(z)’
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The isometric circle in red and the expansion area in
aquamarine for a transformation M(z) = 4z.

. _
% 1 = \/’CM’Tl The set where ‘Mﬁl(z)/

interior of the isometric circle of M 1.

> 1 is then the

The points 0 (center of D), cj; and intersection point of x € 9D N
I(M) form a triangle that satisfies Pythagorean theorem and is there-
fore right-angled. Since any radius of a circle is perpendicular to the

circle, we get that the circles are perpendicular at x. Q.E.D.

An example of an isometric circle and an expansion area is given in

Figure 3.2.

Proposition 3.6. For every orientation-preserving Mobius transformation

we have

MI(M)=I(M") and M(V(M™)) = (UuoU)\(V(M)uI(M™).

Proof. The chain rule for derivative gives

1=1d'(z) = M(M1(2))" = M'(M~'(2)) (M"Y (2).

This leads to ]\//‘7’(]\7*1(,2)) =1 += (M7')(2) = 1, and according to

this,
zeIM™) —= M Y2 =1 = MM *)=1

— M Yz)eI(M) < z€ M(I(M)).

19

Figure 3.2.
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This proves the first claim.
To prove the second claim, consider the following equivalent steps that
use (3.4), we consider z € UU JU:

zeM(VIM™) &= M Y(z)e V(M) &= M* (M '(z)) >1
= (MH)(2) <1 <= 2¢ I(MYHuV(M).
Q.E.D.

An interesting fact about the isometric circles is that I(M) and I(M 1)
define the transformation M uniquely in the following sense.

Proposition 3.7. Let c¢1,c2 € C be two points such that |ci| = |ca| > 1.
Then there exists exactly one orientation-preserving Mobius transformation
M such that ¢c; = cpy and co = cpp-1.

Proof. Let Ay = (q g) Then Az, = (_07— 7[5). This means

B B o
Q e}
cq=—= and cy=—, (3.5)
p B
from which we get
672 —_ _C_V — e?iarga’
C1 «

2

which has a solution, because ‘Cl ‘ = 1, and defines a up to a non-zero real

multiple. Number (3 is then given by either equation in (3.5). Q.E.D.

Proposition 3.8. Let M be an orientation-preserving Mobius transforma-
tion not fixing ¢. Then M is:

(1) elliptic if and only if I(M) and I(M~') intersect inside U;

(2) parabolic if and only if (M) and I(M ') intersect on U (considering
vertical parallel lines as intersecting in c0);

(3) hyperbolic if and only if I(M) and I(M~1) are disjoint.

Moreover, in the elliptic and parabolic case, I(M) N I(M~') is the fixed
point of M.

For the proof, we need a notion of reflection in circle and line.
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Isometric circles of M and M~! and their line of sym- Figure 3.3.
metry in the disc model L—the elliptic case.

Definition 3.9 ([Bea95, §3.1.]). (1) Let S be an Euclidean circle S =
{z € C||z—¢| =r} with the center ¢ € C and radius » > 0. The
reflection in circle S is then a map og : C — C,

7,2

os(z) =c+

Z—C

(2) Let S be an Euclidean straight line S = {¢+ta € C | t € R} given by
parameters o € C, |o| =1 and ¢ € C. The reflection in line S is then
amap og : C— C,

o5(z) =c+a*(z—c), og(c0) = oo.
The reflections in S have the following properties [Bea95, §3.1.-63.2.]:
(1) 0% =1d and og fixes just and only the points in S.

(2) If S is a geodesic (in either half-plane or disc model), then p(z,S) =
p(os(2),S), where as usual p(z,S) = inf,cs p(z,w) and p is the hy-
perbolic distance (in half-plane or disc model, respectively).

(3) If S is a geodesic, then the geodesic [z,05(z)| is perpendicular to S.

Proof of Proposition 3.8. We will use the Poincaré disc model for this
proof. Let J; :=d(I(M)) and Jo :=d(I(M~1)) = M(Jp).
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The angle v is the angle between two isometric circles
with centers ¢, cs.

oD

The proof follows directly from [Kat92, Theorem 3.3.4] and [Bea95,
§7.32.-7.34.]. In [Kat92], it is shown that any Mobius transformation is
a reflection in its isometric circle followed by reflection in L—the Fuclidean
line of symmetry of J; and Jo that passes through the point 0 (see Fig-
ure 3.3). Such L exists because ry; = rj;-1 and |cp| = |epr-1]. Because
or(J1) = Jo and oy, fixes L, clearly J1 N L C J; N Js.

In [Bea95], it is shown that a transformation M is elliptic or parabolic
or hyperbolic, when M is a composition of reflections in two geodesics that
intersect in U or intersect on QU or are disjoint, respectively. Q.E.D.

Remark 3.10. There is one special case in the Propositions 3.8 and 3.7,
when the isometric circles of M and M ™! coincide. This happens only if
cyp = cﬁ, which means cﬁ/[ = Id and M is of order 2, hence it is elliptic.

Proposition 3.11. Let M, M> be two orientation-preserving Mdbius trans-
formations not fixing i. Put

_ el Fleal’ —Jer — e — 2

2y/lesf? = 1y/Jea? — 1

where c1 9 are centers of the isometric circles given by (3.3). Then the
isometric circles I(My) and I(Ms) intersect if and only if |o| < 1 and the
angle 1 at the intersection point satisfies cosy = .
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Proof. We will use the disc hyperbolic model. Suppose that the isometric
circles J; = d(I(My)) and Jo = d(I(M>)) intersect, denote x their common
point that lies in DUOD. The triangle c;xcy satisfies the (Euclidean) cosine
rule |¢; — p|? = 72 + 12 — 2119 cos 1), where 1) = |<c1zey|. Because cpa is

perpendicular to Ji for k = 1,2, we get ) = m — 1) (see Figure 3.4), whence

@+ﬂg—¢1—@\:_wﬂﬁwwﬁ—kq—@ﬁ—z

2ry72 2/lerf? = 1y/lea® — 1

Suppose that the isometric circles have no common point. This means

cosp = —cosd; = —

|c1 — 2| > r1 4+ r2 and |p| > 1 or we would be able to construct a triangle
with side lengths 71,79, |¢; — ca|—contradiction. Q.E.D.
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CHAPTER 4

Fuchsian groups

Lazarus Immanuel Fuchs (1833-1902)
German mathematician, contributed to the theory of differential
equations and influenced Henri Poincaré
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Deﬁnition 4.1. Let G be a group of orientation-preserving Mébius trans-
formations. We say that G is a Fuchsian group if G acts discontinuously in
U.
A group G acts discontinuously in U, if for every compact set K C U
we have
KNnM(K)=10

for all but finite number of M € G.

“Acting discontinuously” is a topological property that can be studied
for any group of homeomorphisms of a topological space.

Example 4.2. It is not easy to prove that a group of Mébius transforma-
tions is Fuchsian. In [Bea95, Example 9.4.4.] it is proved that the modular
group is Fuchsian. The modular group is the group of transformations such
that a,b,¢c,d € Z and ad — bc = 1. The matrices of modular group are
members of PSL(2,Z) defined as

PSL(2,Z) = {(¢%) | a,b,c,d € Z and ad—bc=1} /{I,—I}T

This group is generated by transformations z — —1/z and z — z + 1. For
the proof, it is very important to know the structure of the group.

When a group G is Fuchsian, it means that it is a discrete subgroup
of the topological space of all Mobius transformations. Since a Fuchsian
group G is discrete [Bea95, Theorem 8.4.1.], it is natural to ask for a geo-
metrical interpretation of the quotient space U/G. The following definition
is adapted from [Bea95, Definition 9.1.1]; the authors there introduce a no-

tion of “fundamental set”, which we omit, therefore our definition is slightly
modified.

Definition 4.3. Let G be a Fuchsian group. A subset D C U is a funda-
mental domain of the group G if

(1) D is a domain (open and connected);

(2) Upyeg M (D) = U (recall that - denotes the topological closure in
U U JU, cf. Definition 3.2);

(83) DNM(D) =0 for all M € G\ {Id};

(4) the boundary 0D has zero hyperbolic area.

TSome authors identify modular group with PSL(2,Z), see [wiki5].



A fundamental domain and its images for the modular
group.

It is obvious that D is a fundamental domain of G if and only if M (D) is
a fundamental domain of G for any M € G; and D is a fundamental domain
of G if and only if M~!(D) is a fundamental domain of M ~1GM for any
M € M(2,R).

Example 4.4. Let us take the modular group from Example 4.2. This
group is Fuchsian and its fundamental domain is, for instance, the triangle
with the vertices ¢, —C, 0o, where ¢ := ¢/™/3. On Figure 4.1, this fundamental
domain is highlighted in blue, with its images in red.

Example 4.5. Another example of a Fuchsian group of rational transfor-
mations is a group shown on Figure 4.2 generated by two transformations

My : z v 4z and My = R™' MR, (4.1)
-1
where R:z— z and Moo : z — 9z.
z4+1

The proof that this group is Fuchsian will be given later in Proposition 4.13.

Both the above examples are Fuchsian groups that have 2 important
properties:

e they consist only of rational Mobius transformations;

27

Figure 4.1.
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Figure 4.2.
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A fundamental domain and its images for the group
from Example 4.5.

e their fundamental domain is unbounded in the hyperbolic plane.

In this thesis, we investigate the existence of a Fuchsian group of ratio-
nal Mobius transformation that would have a bounded fundamental domain.
The interest in bounded fundamental domain is given by the fact that un-
bounded domain denies redundancy of the corresponding Mobius number
system.

Ford fundamental domains

Definition 4.6. Let H be a finite or countable set of orientation-preserving
Mobius transformations such that no M € H fixes the point ¢ € U. Then
the set o
rP=U~ |J V)
MeH

is called pre-Ford domain for the set H.

Theorem 4.7 ([Kat92, For25]). Let G be a Fuchsian group such that i
is not a fixed point of any elliptic M € (G. Then the pre-Ford domain for
the set H := G ~ {Id} is a fundamental domain for the group G.

This theorem works only for the groups without elliptic transformations
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M fixing i. It is clear that i is an interior point of P so P N M(P) # 0 for
M fixing i.
However, we can generalize the definition of the pre-Ford domain and

obtain a similar result as the one in the previous theorem.

Definition 4.8. Let H be a set of Mobius transformation such that all the
transformations in H fixing the point 7 form a cyclic group of finite order
r > 2, this cyclic group is denoted by G.. Let P be the pre-Ford domain
for the set H . G¢1. Then for arbitrary angle ¢ the set

Pﬂd_l({Rew‘0<R<1 and ¢0<<P<900+277r})

is called a generalized pre-Ford domain for the set H.

Theorem 4.9. Let G be a Fuchsian group such that i is a fixed point of
some elliptic N € G. Then the generalized pre-Ford domain for the set G

is a fundamental domain of G for arbitrary angle ¢g.

Proof. This theorem can be proved in a similar way as shown in article
[For25]. In Sections 2-5 of the article, the geometry and other aspects of
members of the group are discussed. All these are valid for transformations
M € G \ G¢. The Section 6 is crucial. They define the region P (denoted
R there) and prove two facts that are sufficient for P to be a fundamental

domain:

(1) no two interior points of P are congruent (i.e. are transformed one to
the other by a member of the group);

(2) no region adjacent to P lying in D (denoted K there) can be added
to P without the inclusion of points congruent to points in P.

We ought to adapt these two claims to our case:

(1’) no two interior points of P are congruent by a transformation M €
G~ G

(2’) no region adjacent to P lying in D can be added to P without the
inclusion of points congruent to points in P.

The proof of the first property is as immediate as in the original case —
any interior point of P is transformed by any transformation M € G \ Gg
to the interior of the isometric circle of M, hence outside P.

The proof of the second property is analogous to that in the article
[For25]. Let us consider a point x on the boundary of P, on the isometric

29
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circle of M. Will will show that this point is carried on the boundary of P by
M. The neighborhod of x is carried by M without the alternation of lengths,
since x € I(M). Suppose M(z) is not on P. Since M(x) € I(M~1), it is
not inside P, hence it is inside the isometric circle of some M; € G \ G.
This means that the lengths in the neighborhood of z are magnified by
MM and x lies inside its isometric circle—contradiction. Hence every z is
carried by some M € G \ G4 onto the boundary, and a region adjacent P
in the neighborhood of x is transformed by M inside P. This proves the
second property.

Now we know that images of P under transformations M € (G ~\ G¢) U
{Id} cover the whole hyperbolic disc D, i.e.

D= U M(P). (4.2)

Me(GNGe)U{1d}

Moreover PNM (P) = () for M € G\ G,. Let Ny € G, be a transformation
with minimal angle of rotation, which is equal to 27 /r. Then G¢ = (No) =
{N§ | ke{o,...,r—1}}. Denote

Q;:Pﬂd_1<{rei‘p’0<r<1 and <,00<90<‘P0+277r})'

Then

—_—~—

7‘—1 —_—~—
P=N@= U N@
k=0

NeGq

and according to (4.2)

p= U wmp@)= U ¥(¥@) = U M@
MeGNGqU{Id} MeG~\GquU{ld} N€eGq MeG
Q.E.D.

Definition 4.10. The fundamental domain from Theorem 4.7 is called Ford
fundamental domain.
The fundamental domain from Theorem 4.9 is called generalized Ford

fundamental domain.

Example 4.11. Consider again the modular group from Example 4.2. The
transformation z — —1/z of order 2 fixes i and is the only such elliptic
transformation in the group. The set P for this group is a tetragon and the
fundamental domain is its half. The shape of the domain depends on the
choice of the angle ¢g. For the choice pg = 0 see Figure 4.1. For the choices
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Different generalized Ford fundamental domains for the
modular group.

wo = —m/4 and pg = —7/2 see Figure 4.3. Notice that the number of sides
of the fundamental domains differs with different choices of ¢ (the notion
of side will be exactly defined later in Definition 4.15).

Theorem 4.12. Let G = (M, ..., M) be a Fuchsian group such that none
of M; fixes i and the regions V (M), ...,V (M), V(M Y),..., V(M ') are
pairwise disjoint. Then G is a Fuchsian group.

Proof. Let us consider the Mobius iterative system with generating trans-
formations F; = Mj, Fji; = Mj_1 for j € {1,...,k}, with forbidden
words X = {j(—j),(—j)j ’ j € {1,...,k}}; this means that the alpha-
bet is A = {—k,...,—1} U{1,...,k} and the subshift ¥ is a subshift of
finite type. In this system, every member of G is representable, because
FjFy.j = FyjF; = Id for all j. Let us denote Q, := U\ (V (F, ) UI(F,)) =
U~ V(F;1), for a € A.

We will now show that for all u € £(X) and a,b € A such that uab €
L(X) we have

FuFyFo(Qa) C FuFy(Qp).

The idea of the proof can be followed on Figure 4.4, which shows the situa-
tion for a group mentioned in Example 4.5.

(1) First, consider v = A and ab € ¥. According to Proposition 3.6, we

P

have Fy(Qu) = F,(UNV(F; 1) = UN E(V(F:Y) = U~ (U~

31

Figure 4.3.
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The expansion area V(M;) in red, the set @); in yellow
and green and the set F1(Q;) in green.

V(F,)) = V(F,). Since the expansion areas V (F,) and V(F, 1) are
disjoint, because ab € X, we have F,(Q,) C Qp and FpF,(Q,) C
Fy(Qb)-

(2) Because F, is a map, clearly F,, F, F,(Q,) C F,Fp(Qp) since we already
have F,F,(Qa) € Fy(Qp).

Now let us have u = wouy ... un—1, then Fy(Qu, ) € Fuy, ;) (Qu, ) €
gFumﬂ(Qm) gFuO(QUO)‘ o

Let us consider a pre-Ford domain P = D \ |J,c4 V(Fa). We shall
see that P C Q, and PN F,(Q,) = 0 for all « € A. Because F,(P) C
Fu(Qu, 1) € Fuy(Qy,) for any v € L(X) ~\ {A}, the images of P do not
overlap.

According to Theorem 4.7, the Ford fundamental domain for this group
is surely a subset of P, therefore it is clear that [, c () Fu(P) = U.

Together, P is a fundamental domain for the group, which means that
the group is Fuchsian. Q.E.D.

Proposition 4.13. The group G = (Mj, Ms) given by (4.1) in Example
4.5 is Fuchsian.



4.1. Ford fundamental domains 33

A pre-Ford domain for {M;, My, M, M;'} given by Figure 4.5.
(4.3) and its images under elements of the group
(M, Ms) of the length up to 5 (cf. Remark 4.14).

V3

VY
-3/2 &

-1/1 1/1
-3/4 3/4
-2/3 2/3

Proof. The transformations ﬁl = ]\71, ﬁg = ]\72, F\g = M\f 1 and ﬁ4 =
]\/4\5 ! have matrices (_%; ), (% 34), (372" and (3 3), respectively. This
gives for the centers of isometric circles ¢y = —5i/3, co = 5/4, c3 = 5i/3
and ¢4 = —5/4. The corresponding radii satisfy r1 = r3 = 4/3 and ry =
ra = 3/4. It can be easily verified that |c¢, — cp| > 74 + 1 for a # b, which is
satisfactory for the expansion areas to be disjoint and the previous theorem

can be used. Q.E.D.

Remark 4.14. The condition on expansion areas to be pairwise disjoint is
crucial for the proof of Theorem 4.12, because in that case the group contains
no elliptic elements (for, the neighborhood of the fundamental domain P is
tessellated by Fi(P) for a € A, and none of them is elliptic or V(M) and
V(M ~1!) intersect for any elliptic M not fixing 7).

Consider for instance the group GG generated by

V3+1
V31 (4.3)

-1
and M, := R-\MR where R: 2+ — .
z+1

The pre-Ford domain for the set H := { M, My, Ml_l, M{l} is a hyperbolic
square with the angles at the vertices equal to 7/3 (cf. Proposition 4.20).

Mz qz for ¢ =
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However, the group element N := M MyM 1M2_ 1M1 Mo is elliptic of order
2 with a fixed point ¢, which means that P is not a fundamental domain for
G, because N(P) = P. The domain P and its images under the elements
of G of the length up to 5 are shown in Figure 4.5.

Sides of Ford fundamental domain

Since every isometric circle is a geodesic and the boundary of a (general-
ized) Ford fundamental domain consists of isometric circles and at most two
geodesics at meeting the point 4, the boundary of the domain is a union of
geodesics.

Definition 4.15. Let P be a (generalized) pre-Ford domain for a set H
satisfying M € H <& M~! € H. A side of a (generalized) pre-Ford fun-
damental domain P is any set £ C U such that ¢ comprises more than one
point and

(=PnNM(P) forsome M € G~ {Id}, (4.4)

with the following exception: When M (¢) = ¢, there’s a fixed point sp; of
M in the middle of ¢ = [z1, 23] (¢ is necessarily a geodesic, see below). In
this case, sides are [z1, sps| and [s)r, z9] instead of the whole /.

Since PN M (P) = (), ¢ is necessarily part of the boundaries of both sets.
Because P is a convex set, the side is necessarily a geodesic. We call the
endpoints of sides vertices of the domain P.

Let ¢ be a side and M be the corresponding group element. Then from
(4.4) we have M~'(¢) = M~*(P) N P, which means that M ~*({) is a side
with M ~! being its side-pairing transformation.

This justifies the following definition.

Definition 4.16. Let P be a (generalized) pre-Ford domain for the set H.
For a side ¢, let M, € H be the transformation satisfying / = PN M (?)
The side pairing of the domain P for the set H is a mapping II on the set
of sides of P satisfying

Each point of a side £ that is not a vertex of P is mapped by M, L %o
a unique point in the side II(¢). However, a vertex v belongs to exactly
two sides of P, let us denote them ¢, and ¢,. Let us now construct an
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Side pairings of the different generalized Ford funda-

mental domains for the modular group—the black line

corresponds to the transformation z — —1/z, the red

line to z — z + 1 and the green line to z — (2 — 1)/z

(top); the corresponding graphs Gp on the vertices of
the domains (bottom) (cf. Example 4.17).

GHPE

oo 20 e
_g./é\.g )¢ 26 (e ¢
0 7

un-oriented grapht Gp = (V, E) with V being the vertices of P and edges
E = {{v, M (v)}, {v, M ' (v)}|v € V'}. (4.5)

The connected components of V' are either cycle graphs or simple complete
graphs on two vertices or isolated vertices with loops. This is due to the
fact that each vertex has an edge to only itself (if M,, fixes v), to one vertex
(if M[vl(v) = M, *(v), in which case M[vl(v) has edge only to v) or to two
vertices (otherwige).

Example 4.17. A side of a domain need not to be a side in the common
sense. In Figure 4.6, we can see that one geodesic comprises more sides

¥ Un-oriented graph G is a pair of sets (V, E). The set V is arbitrary set and its elements
are called vertices. The set E is a subset of (‘2/) U (‘1/), where (‘5/) is a set of subsets of
V of the size s; the elements of F are called edges. For e € E, if we have #e = 2 then
e = {v,v'} is an edge between vertices v,v’ € V; if we have #e = 1 then e = {v} is a
loop on a vertex v. The set E can be interpreted as a relation “having common edge” on
the set V—Iet us denote the symmetric, reflexive and transitive closure of this relation ~.

Then the connected component of V is a graph with V' C V being an equivalence class of
~and E' = EN ((‘;/) U (Vl')) A graph (V, E) is a cycle, we write V = (vo, v1,...0r-1),

if B = {{vx_1,vs} ‘ ke{l,...,r—1}}U{{vo,v1}}. A graph (V, E) is a simple complete
graph if E = (‘2/)

35

Figure 4.6.



36

Figure 4.7.

Chapter 4. Fuchsian groups

To the proof of Theorem 4.18, to illustrate the ‘+’ sign in

the sum of angles: the hyperbolic case in the left and the

elliptic case in the right; the parabolic case is analogous
to the elliptic one.

S"k

A

(two in the figure). The figure shows side-pairings for the three fundamental
domains of the modular group, as they are depicted in Figures 4.1 and 4.3.
Below each figure, the corresponging graphs Gp are drawn.

Theorem 4.18. Let P be a (generalized) pre-Ford domain for a set of
transformations H. Let C' = (vg,ve,...v,—1), I > 2, be a cycle of a graph
Gp given by (4.5). For k € {0,...r — 1}, let M}, € G be the transformation
mapping vi_1 to v and let oy, be the angle between the sides that meet at
vy, where we consider the indices modulo r, i.e. v_1 = v,_1 etc.

Denote 0 = Z;;é aj and N == M,_1M,_5--- M1 My. Then:

(1) N is identity if and only if 0 € 277Z;
(2) N is elliptic with rot N = @ if and only if 6 ¢ 27Z.

Proof. Let ¢; be the side of P such that M j_l (¢;) is a side as well from which
it is clear that the sides meeting at v; are exactly ¢; and ¢ = M jf_s_ll (€j41).
The angle between ¢y and £ is «p.

From the conformity of Mobius transformations we know that the angle
between My (¢y) and My(4) = ¢1 is o as well. The angle between ¢; and
¢} is aq, hence the angle between My(¢y) and ¢ is ap + ;.

Similarly the angle between M;(My(¢y)) and ¢3 is ag + a1 + o, After r
steps we get that the angle between M, _1 (M, _a(- - - (M1(My(4p))))) = N (4o)
and 4, = flyisag+ag +---+ a1 = 0.

It remains to explain why the angle «y is always added to the sum and
never subtracted. For a hyperbolic transformation M}, consider the triangle
with vertices s)/, (one of its fixed points), and the vertices of £. Since the
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An example of a domain with 6 sides and a cycle in the
graph Gp of the length 4 (left) and the whole graph Gp
(right) (cf. Theorem 4.18).

{
————i __{......_...>

{
\
{
\
\

7

1

transformation is orientation-preserving, i.e. it preserves orientation of any
hyperbolic triangles, the side ¢ is mapped as depicted in Figure 4.7. For
a parabolic or elliptic transformation, consider the vertices of ¢; and the
fixed point spz,. Since the transformation keeps the hyperbolic distance
unaltered, it preserves the order of these points on the geodesic I (M, 1), as
depicted in Figure 4.7.

Transformation N fixes the point vy. If 8 is a multiple of 27, N is an
orientation-preserving Mobius transformation that fixes every point on £;
which means that it is the identity. Otherwise it is an elliptic transformation
with 6 being its angle of rotation. Q.E.D.

For an illustrative example, see Figure 4.8, where the situation is shown
for a Ford fundamental domain consisting of 6 sides, with a cycle in the
graph Gp of the length 4.

The theorem, in many cases, instantly shows the existence of elliptic
element in a group. For instance, the graph Gp for the domain in Figure 4.5
(cf. Remark 4.14) is a cycle, all the angles are equal to /3. This gives that
for each vertex of the domain, there exist an elliptic transformation that
fixes it and has the angle of rotation equal to 27/3, these group elements
are My MoM; M, " and its conjugates. Beardon [Bea95] does not discuss
the necessity of existence of the elliptic transformations in a Fuchsian group
with a bounded fundamental domain. We state the following conjecture,
whose justification is explained below in Example 4.21.

37
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Conjecture 4.19. There exist a Fuchsian group G with a bounded funda-
mental domain, such that G contains no elliptic transformations.

We will use the following statement from [Kir09al.

Proposition 4.20. Let 2m, 2n be positive integers such that 1/m+1/n < 1.
Put ¢ := 7/n, 1) := 7/m and q = (1 +4/1— 5353//22)/@ —4/1 - ::;zz//z)
Let us define the following transformations:

(g+1)z—i(g—1) .
i(qg—1)z+(q+1)’

. FoizHZ/q,heHCQF():ZH

e R:zrs ey (rotation around O by the angle ¢ in the disc model), i.e.
2z cos ¢/2+sin ¢/2
—z sin ¢/2+cos ¢/27

R:zw
e Fi:z+— RFELR7F(2).
Then the set P = U ~ Uizo V (F}) is a regular 2n-gon whose inner angles
are equal to .

Proof. We first show that ¢ € R and ¢ > 1—for this, see the following
where each inequality implies the next one:

0 <1m+1/n<1;
cos(™/2m + 7/2n) > 0 and  cos(7/2m — 7/2n) > 0;
2 cos(™/2m + 7/2n) cos(7/2m — 7/2n) > 0;
cos ™/m + cos ™/n > 0;
2cos® 7/2m + 2 cos® m/an — 2 > 0;
cos® m/am > sin® 7/2m;

_ sin?¢/2
cos? ¥/2

1

> 0;
q>1.
Since R*™ = Id, we immediately see that the the set P satisfies a 2n
rotational symmetry in the disc model. The value of inner angles can be

computed using Proposition 3.11. For the simplicity, let us measure the
angle between I(Fp) and I(F7). Using (3.3), we see that

qg+1

= and ¢; = coe'. 4.6
co=i —7 and o =coe (4.6)
Denote ¢ = |cg| = |e1|. Then |cg — ¢1| = 2¢sin ¢/2 and
2 2 2 2
c 2¢* — 4c*sin” ¢/2 — 2 Prop. 3.
-1+ 21 sin? ¢/2 = — 2 = 1)/ Lrop: 38 costp = cos? ¥/2 — 1.
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The pre-Ford domain P from Example 4.21 in blue and Figure 4.9.
the cycles of graph Gp in green and yellow. The inner
angles are all equal to 27/5.

Let us denote ® = sin?¢/2 and ¥ = cos?%/2. Then we can express 1/c in
the terms of ®, U:

02

~1 d=0—1;
+02—1 '
2
C
= U/®;
2 -1 /®;
Al -T/P) =T/,
1/*=1-3/0.

From (4.6) we see that gc —c= ¢+ 1 and

c+1l 1+1/c 1+4+/1-0/¥

q= . Q.E.D.

c—1 1-1/c 1-/1-d/¥

Example 4.21. Let us apply the previous proposition to the case n = 5
and m = 2.5 and take the group G := (Fy, F1,... Fy).

As we already said, proving that a group is Fuchsian is generally very
difficult. Suppose now that G is Fuchsian and a pre-Ford domain for the

set of transformations {Fy,..., Fy, Fo_l, . ,F4_1} is its Ford fundamental
domain.
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This domain is, according to the previous proposition, a regular hy-
perbolic 10-gon with the angles at its vertices all equal to 27/5 and it is
bounded. This domain embodies a side-pairing given by the generators Fj.
The graph Gp comprises two cycles of the length 5. (In Figure 4.9, the sides
of P are depicted in blue, its vertices in black, and the graph Gp in green
and yellow.)

For Theorem 4.18, we have all oy equal to 27/5 and r = 5, hence
@ = 2m. This means that the transformations satisfy F0F2F4F1_1F3_1 =
FoFy 1Ff LFyFy = 1d, which is obviously true for all the conjugates of these
two as well.

Under the assumption that P is a fundamental domain, we get that
the group contains no elliptic transformations—if there existed an elliptic
M € G, its fixed point would have to be a vertex of an image of P, and by
conjugation there exists another elliptic M1 € G with the fixed point being a
vertex of P itself, let us denote it v. Then M;(P) meets the neighborhood of
v, but the neighborhood of v is tessellated by images of P under hyperbolic
transformations, contradiction. This led us to state Conjecture 4.19.
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Julius Wilhelm Richard Dedekind (1831-1916)
German mathematician, worked in algebra and the foundations of the
real numbers, discovered the tessellation by the modular group.
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The significant values of the trace of a Mdbius transfor-
mation.

tr2 M rot M = 2 arccos Lr;M order of M

0 s 2
1 27/3 3
2 /2 4
3 /3 6

Our concern is to study rational groups, i.e. groups of transformations

with matrices in PGL"(2,Z), which comprises matrices with integer coeffi-

cients and a positive determinant. Let us recall that we identify the matrices
; n—l_ 1 d —by _ (d —b).

A and M\A, which means that (‘Cl d) = Tt A (76 a) = (76 " ), for the same

reason we speak about “rational groups” and consider the matrices to have

integer coefficients.

In Examples 4.2 and 4.5 we show that there exist rational Fuchsian
groups, but in both cases, their fundamental domain is unbounded.

We have not found any example of a rational Fuchsian group with
bounded fundamental domain, so we stated the following conjecture.

Conjecture 5.1. There is no rational Fuchsian group with a bounded fun-

damental domain.

However, the proof of this conjecture seems to be unreachable. Even
though, we try to investigate some cases.

Groups with elliptic elements

Suppose first that the group G contains elliptic elements. Since we consider
Fuchsian groups, the angle of rotation of any elliptic M € G satisfy rot M €
7Q; or in the case rot M ¢ wQ, the powers of M accumulate in 9t(2,R).

This puts a restriction on the values of the trace tr? M.

Proposition 5.2. Let G be a rational Fuchsian group and M € G be an
elliptic transformation. Then

tr? M € {0,1,2,3}.

Proof. From Proposition 3.4 we know that tr? M = 4 cos? % Any angle
0 satisfies 2cos?0 = 1 + cos26. Hence tr> M = 2(1 + cosrot M). Because
A/ has rational elements, tr?> M € Q, which follows to cosrot M € Q.
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In [Olm45], it is shown that when # € 7Q satisfies cosf € Q, then
cosf € {O,i%,il}. Because rot M € 7Q and cosrot M € Q, we have
cosrot M € {0,43,+1} and

tr2M€2<1+{—1,—%,0,%,1}> = {0,1,2,3). Q.E.D.

In Table 5.1, we have the significant values of trace from the previous
theorem and the corresponding angles of rotation. The information in the
table leads to the following corollary.

Theorem 5.3. A rational Fuchsian group contains only elements of orders
1,2,3,4,6, .

Proof. Hyperbolic and parabolic elements have infinite order, elliptic ele-
ments have orders 2, 3,4, 6 according to Table 5.1. The order 1 corresponds
to the identity transformation. Q.E.D.

We now try to transform the problem of existence of a rational Fuchsian
group with bounded domain to a problem of solving a system od Diophantine
conditions.

Let us suppose that in G, there exist two elliptic elements M 2 having

different fixed points, such that the composition My o My is elliptic as well.

Denote Ay, = (¢5) and Ay, = (2 5). Then Anas, = (4756 051aD)-

According to Proposition 5.2, we have the equations

A+bC + B +dD)?
2 000, — @ 1.2.3): 1
tr 1 2 (ad— bC)(AD _ BC) 6 {0? ) 73}7 (d )
2 . (a+d)2 .
tr? My = “d be € {0,1,2,3}; (d2)
A+ D)2
tI'2 M2 = Ing—i_—_B)C' S {0, 1,2,3} (d3)

We emphasize the different fixed points, because when M; and Ms have
the same fixed point and rot My 2 € wQ, then clearly M;Ms has the same
fixed point and rot My My = rot My &+ rot My € 7Q. The fixed point s; of
M satisfies s; = ‘C{fllj:g, equivalently cs? + (d — a)s; — b = 0; the fixed point
s9 of M satisfies C’s% + (D — A)sy — B = 0. Because all the coefficients are
real, we shall see that s; = s if and only if (¢,d — a,b) = A(C, D — A, B)

for some A # 0. Enforcing s; # sy is then equivalent to satisfying one of

the inequalities

¢(A—=D)— (a—d)C #0; (d4)
or b(A—D)—(a—d)B #0; (db)

43
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let us denote the last two left-side terms w. and wy, respectively.

All these considerations can be summarized in the following way.

Theorem 5.4. Suppose that the system of conditions (d1)—(d5) has no
integer solutions. Then there exist no rational Fuchsian group G containing
elliptic transformation M o with different fixed points such that M M> is
elliptic.

Unfortunately, this theorem gives only a partial results, in 2 senses:
(1) we do not know whether the system has integer solutions;

(2) we do not know whether elliptic transformations have to be contained
in a Fuchsian group with a bounded fundamental domain;

(3) we do not know whether when the group contains elliptic transfor-
mations, it contains an elliptic composition of elliptic transformations

with different fixed points.

These three questions are essential for the Conjecture 5.1. The previous
theorem would then answer the conjecture for a broad family of Fuchsian
groups, but it would not answer it completely.

Using a computer simulation, we have shown the following.

Claim 5.5. The system of conditions (d1)—(d5) has no integer solution with
a,b,c,d,A,B,C,D € {—100,—99...,99,100}.

The description of the program can be found in Section 5.2. To make
the program run significantly faster, we use following several symmetries of
the conditions:

Lemma 5.6. Let Sol be the set 8-tuplets (a,b,c,d, A, B,C, D) € Z8 of the
solutions of the system (d1)—(d5). Then

o = (a,b,¢,d, A, B,C, D) € Sol
— v® = (A,B,C,D,a,b,c,d) € Sol
— v® = (a,¢,b,d, A, C, B, D) € Sol
— oW = (d,b,c,a,D,B,C, A) € Sol
— v = (=a,b,¢,—d,—A,B,C,—D) € Sol
— v = (a,~b,—c,d, A, —B,—C, D) € Sol
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Proof. Let us denote fi(a,b,c,d, A, B,C, D) the formula in the condition
(di), for i = 1,...,5. Then clearly

AW) = AP) = AP)) = (W) = A10P) = L(9),

F2(0) = f3(0) = fo(0®) = fo(0®) = fo(0®)) = f2(0'D),

f0W) = fo(v@) = f3(08)) = f3(00) = £ = (@),
Fi0W) = —f1(v@) = f5(v®)) = = f1(vW) = — f1(v®) = — f1(v©),
Fs(0) = = f5 (@) = fa(w®) = = f5(0V) = = f5(v©®)) = = f5 (1),

which is satisfactory for the equivalence of the solutions of the system.

Q.E.D.

Example 5.7. We now show a few examples of “partial solutions”—when
we omit some of the conditions, we get a solvable Diophantine system.

o Let Ay, = (223) and Ay, = (323). Then both M; and M, are
elliptic and have different fixed points, because ¢(A— D) —(a —d)C =
2 #0and b(A— D) —(a—d)B = 6 # 0. The traces satisfy tr> M; = 0,
tr2 My = 3 and tr2 M1 My = %, hence MjMs is elliptic with infinite
order.
This means that if we modify (d1) to tr? MM, € [0,4), i.e. MM, is

elliptic but with a general value of trace, we find a solution.

o Let Ay, = (_15 l‘{) and Ay, = ((1) _11). Then both M7 and M are
elliptic and have different fixed points, because ¢(A—D)—(a—d)C = 3

and b(A — D) — (a — d)B = —8. The traces satisfy tr’ M; = 0,
tr> My = 1 and tr> MM, = 4, hence M; M, is parabolic and not
elliptic.

This means that if we modify (d1) to tr? My My € Ny, i.e. MMy is
generally not elliptic but has an integer trace, we find a solution.

o Let Ay, = (}5 l(i) and Ay, = ((13 *11). Then both M; and My are
elliptic and have the same fized point, because ¢(A — D) — (a —d)C =
b(A — D) — (a — d)B = 0. The traces satisfy tr> My = 3, tr> My = 1
and tr? M; M, = 3, hence M; M, is elliptic and has the finite order.
This means that if we omit (d4), (d5), i.e. we allow M; and My to
have the same fixed point, we find a solution.

These examples are summarized in Table 5.2, with two additional ones.
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0 0 0 z e (c—‘1¢—‘¢) (¢‘T—‘6T—)
0 0 T ¢ 0 FerL—9%—) (61°€1‘L—‘1T)
0 0 ¢ 1 ¢ (T7—‘1°0) TF'1—%)
8— ¢ i 1 0 (T‘r‘t='0) (1—‘¢=‘or‘n)
9 4 e/ ¢ 0 (G—8%—‘¢) (¢—‘L¢—"9)
0# o0# {e 0> {e o> {e" 0} > vZ 2 A= IUOI}IPUO0))
im P YN 0 S L1 T 1) (a@o'dav) (p2q‘D) :Ay1yurend)
(cp)  (¥P) (ep) (zp) (1P) :uoryenbyy
qp—n)—(d—-v)g="1"
pue H(p—p) — (@ — V)2 = °mM 9)0UIp SAA ‘SUOHIPUOD dY} JO dWOS dA[0S Ny
¢S dldeL pue Wy S9d1IJRW JI9Y} JO SJUSWIDLR Y} Jey} yons ¢y Iy jo sojdwexa ay],
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Program for finding solutions of the
Diophantine system

In Claim 5.5, we state that the system of Diophantine conditions (d1)—(d5)
has no integer solutions with all unknowns in modulus less than or equal to
100.

To show this statement, we used a computer program written in the
programming language C++. The program is not long, which allows us to
explain its principles in detail.

Headers for text output handling.

1 #include<iostream>

2 using namespace std;
LL is a type we use to store integers. The maximum value of number in LL
is (at our machine) over 9 - 1018, as we checked by LONG MAX in the module
<climits>.

3 typedef long int LL;
We use the Euclid algorithm to compute the greatest common divisor of two
numbers. We have to deal with the input a = b = 0, for which the value
of ged is undefined in mathematics; we set the result to 0 in this case, since
in the end, we compute ged(a, b, c,d) and if all of them are 0, the matrix is
singular and we exclude it no matter the value of ged.

4 LL ged(LL a, LL b){

5 if (a<0) a=-a;

6 if (b<0) b=-b;

7 if ((a==0)&& (b==0)) return O;

8 if(a==0) return b;

9 if(b==0) return a;

10 LL c=a%b;

11 while(c!'=0){

12 a=b;

13 b=c;

14 c=a%b;
15}

16 return b;
17 }

The largest numbers we manipulate are squared traces of products of ma-
trices, i.e. numbers of the form (XX + XX + XX + XX)? where X stands for a
coefficient in the matrix. This is in modulus smaller than 16 - M*, where M

47
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is the upper bound for the coefficients. We restrict ourselves to M < 2 - 104,
which gives 16 - M* < 3-10'® < LONG_MAX.
The maximal choice M = 20000 would make our simulation run for ages.
Thus we bound the coefficients by much smaller M = 100.

18 const LL M=100;
The main program.

19 int main(){
We need several integer variables: for the matrices’ coefficients, determi-
nants, to store some greatest common divisor (see later) and traces of the
matrices. We work with matrices M; = (28) and My = (8 5).

20 LL a,b,c,d,A,B,C,D;

21 LL xdet,xDET;

22 LL xgcd;

23 LL t,T,Tt;
The main part of the program. It comprises 8 nested for-loops, each for one
coefficient of the matrices My, Ms. At various places we exclude such com-
binations of coefficients that cannot lead to a new solution of the equations.

24 for(a=-M; a<=M; a++){
Printing verbose information to enable checking the progress.

25 cout << "kx*k g = " << g << " *k*x" << endl;
26 for (b=-M; b<=M; b++){
27 xgcd=gcd(a,b);

Lemma 5.6, relation v(!) € Sol < v(® € Sol, gives that if there is a solution
with b < ¢, then there is a solution with ¢ < b as well. Therefore we can
restrict the simulation to ¢ < b.

28 for(c=-M; c<=b; c++){

29 xgcd=gcd (xged,c) ;
Lemma 5.6, relation v(!) € Sol < v(* € Sol, gives that if there is a solution
with a < d, then there is a solution with d < a as well.

30 for(d=-M; d<=a; d++){
In the four outer for-loops, we compute the number xgcd = ged(a, b, c,d).
The 4-tuplets such that xgcd > 1 cannot bring a new solution since for such
solution, there must be one for a 4-tuplet (a/xgcd, b/xgcd, c/xged, d/xged)

as well.
31 if (gcd(xged,d) !'=1) continue;

The matrix M; cannot have negative or zero determinant.
32 xdet=axd-b*c;
33 if (xdet<=0) continue;

Trace squared of the matrix M;.
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34 t=(a+d)*(a+d) ;
The trace square of the transformation is ff;t %11 We exclude such matrices
that gﬁj‘ﬁi > 4, which can be rewritten as tr? M; > 4det M; to avoid divi-
sions.

35 if (t>=4*xdet) continue;

The trace has to be an integer, which means that the division det M; =tr? M,
cannot give a non-zero residue.

36 if ((t%xdet) '=0) continue;
Lemma 5.6, relation v(!) € Sol < v(®) 46 e Sol, allows us to omit negative
values of A and B, since the existence of a solution with negative A, B enforces
the existence of a solution with non-negative values.

37 for (A=0; A<=M; A++){
38 for (B=0; B<=M; B++){
39 for(C=-M; C<=M; C++){

Lemma 5.6, relation v™) € Sol < v(?) e Sol, gives that if there is a solution
with d < D, then there is a solution with D < d as well.

40 for(D=-M; D<=d; D++){
Now follows conditions on det Ms and tr? M», analogous to those for M;.
41 xDET=A*D-Bx*C;
42 if (xDET<=0) continue;
43 T=(A+D) * (A+D) ;
44 if (T>=4*xDET) continue;
45 if ((T%xDET) !=0) continue;

We compute the trace squared of a matrix M;Ms and perform similar re-
strictions as on M7 and Ms.

46 Tt=axA+b*xC+c*xB+d*D;

47 Tt=Tt*Tt; // trace squared of M1x*M2
48 if (Tt>=4*xdet*xDET) continue;

49 if ((Tt%(xdet*xDET)) !'=0) continue;

Finally, we forbid M; and M> to have the same fixed point.
50 if (

51 (c*x(A-D)-(a—-d)*C==0)
52 &&

53 (b* (A-D) - (a-d) *B==0)
54 ) continue;

When we get to this point, we get a solution of the system which we print.
55 cout << "solution: a,b,c,d,A,B,C,D = "
56 << a << "M << b<< "
57 <K c K« "M d <<,

49
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58 << A << ll’ll << B << "’ll
59 << C K< "," << D<M
60 << endl;

Terminate the for-loops and exit the program.
61  }}}}}}i}
62 return O;
63 }
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Chapter 6. Conclusions

This thesis studies some aspects of Fuchsian groups and aims on the groups
of rational transformations. We have not been able to provide a definite an-
swer to the question of existence of such groups. In Chapter 5, we conjecture
that no such groups exist, and we support this conjecture by a computer
experiment that is described in Section 5.2. Very important condition is
given in Theorem 5.3.

Beside the discussion on rational groups, we proved several interesting
results:

e Theorem 4.9, which generalizes the result in [For25];

e Theorem 4.12, which provides a large family of Fuchsian groups that
contain no elliptic transformations and their fundamental domain is

unbounded;

e Theorem 4.18, which allows to compute the angle of rotation of elliptic
transformations fixing the vertices of (generalized) Ford fundamental
domains and pre-Ford domains.

Open problems

The problem of existence of a rational Fuchsian group with bounded funda-
mental domain remains open. As well, more investigations in the theory of
Mobius number systems can be done. Especially, only orientation-preserving
Mobius transformations have been considered in these systems. If we add
the orientation-reversing Mobius transformations, i.e. such M,y . q that
ad—be < 0, we get the general Mébius group &M (2, R). The group M(2,R)
is a subgroup of &®M(2, R) of the index 2. Expanding to general the Mobius
group would allow to use the knowledge on Mdbius number systems to the
simple continued fraction, and to the radix representations with the negative

base, such as the Ito-Sadahiro numeration [IS09)].
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Index of Notations

Symbol Description

N natural numbers, N == {0,1,2,3,---}

Z integer numbers, Z = {--- ,-3,-2,-1,0,1,2,3,---}

Q rational numbers

R real numbers

C complex numbers

arg z argument of a complex number z, z = || e! 87

Rz, Sz real and imaginary component of a complex number,
z =Rz 418z

z complex conjugate of z € C, z = Rz — iSz

#X number of elements of the set X

R extended real line, R := R U {oo0}

C extended complex plane, C := C U {oo}

U upper complex half-plane, U := {z € C| 3z > 0}

ou boundary of U, synonym for R

D unit complex disc, D= {z € C| |z| < 1}

oD boundary of D, D := {z € C | |z] = 1}

[21, 29] geodesic between points z; and 29

p(z1, 22) hyperbolic distance of two points, the hyperbolic
length of [z1, 29].

@ topological closure of () in U

Q topological closure of @ in UU 0U

GLT(2,R) group of 2 x 2 real matrices with strictly positive
determinant

PGL™(2,R) group GLT(2,R)/~, where A ~ B iff
(A eR,A#0)(B=)A)

PSL(2,7Z) group of 2 X 2 integer matrices with determinant 1,
factorized by {I, —I}

M(2,R) group of all orientation-preserving real Mobius
transformations

M(2,7Z) group of all orientation-preserving real Mobius
transformations with integer coefficients

&M(2,R) group of all real Mobius transformations

typical notation of coefficients of a matrix of a Mobius
transformation in the half-plane model

typical notation of coefficients of a matrix of a Mobius
transformation in the disc model

circle derivative of M

isometric circle of M

expansion area of M

convergence space for the system F
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Symbol Description

(915, 9m) group generated by the elements g1, ..., gm

leng, g,....9.(R)  length of h € (g1,...,9m)

A alphabet, in general any finite set with #.4 > 2
A* the set of finite words over the alphabet A

u* the set of words of the form u* for k € N

AN the set of right infinite words over the alphabet A
ul the ultimately periodic infinite word u" = wuw - - -

subshift of finite type with forbidden set of factors X







General Index
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A

acting discontinuously, 26
alphabet, 8
angle of rotation, 17

C

closure
hyperbolic, 15
concatenation of words, 8
continued fraction, 10
alternating, 11
cycle, 35
cylinder, 8

D

derivative
circle, 18

domain
generalized pre-Ford, 29
pre-Ford, 28

E

edge
of graph, 35
expansion area, 18

F

factor, 8

fundamental domain, 26
Ford, 30
generalized Ford, 30

G

geodesic, 14
graph, 35

General Index

simple complete, 35
un-oriented, 35
group
Fuchsian, 26
general Mobius, 52
Mobius, 16
modular, 12, 26
rational, 42

I

isometric circle, 18

isometry, 15

L

language, 8

length
of group element, 10
of word, 8

M

Moébius iterative system, 9
Mobius number system, 9
redundant, 9
Mobius transformation
elliptic, 16
hyperbolic, 16
in hyperbolic geometry, 15
orientation-reversing, 52
parabolic, 16
rational, 17
real orientation-preserving, 9
map
conformal, 14, 15
isometry, 15
metric

hyperbolic, 14



p U

prefix, 8 unit disc, 14
upper half plane, 14

R

Rényi positional system, 10 V

reflection vertex
in circle, 21 of fundamental domain, 34
in line, 21 of graph, 35

S W

set word, 8
clopen, 8 forbidden, 9
SFT, 9
shift
full, 9
shift map, 8
side

of pre-Ford domain, 34
side pairing, 34
space

convergence, 9
straight line

hyperbolic, 14
subshift, 8

of finite type, 9
substitution, 8
suffix, 8

infinite, 8
symbolic representation, 9

T

tail, 8

trace
of Mobius transformation, 17
of matrix, 17
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