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Abstract

Any amicable pair ¢, 1 of Sturmian morphisms enables a con-
struction of a ternary morphism 7 which preserves the set of infi-
nite words coding 3-interval exchange. We determine the number
of amicable pairs with the same incidence matrix in SL(2, N) and
we study incidence matrices associated with the corresponding
ternary morphisms 7.
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1 Introduction

Sturmian words are well-described objects in combinatorics on words. They
can be defined in several equivalent ways [5], e.g. as words coding a two-
interval exchange transformation with irrational ratio of lengths of the inter-
vals. Morphisms preserving the set of Sturmian words are called Sturmian
and they form a monoid generated by three of its elements (see [6, 12]). Let
us denote this monoid by Msiurm-

In this paper, we consider morphisms preserving the set of words coding
a three-interval exchange transformation with permutation (3,2, 1), the so-
called Jiet words. We call these morphisms Jiet-preserving. Monoid of these
morphisms, denoted by Msiet, is not fully described. It is shown (see [9])
that the monoid Msiet is not finitely generated. Recently, in [2], pairs of
amicable Sturmian morphisms were defined. The authors used this notion
to describe morphisms that have as a fixed point a non-degenerate 3iet
word, i.e. word with complexity C(n) = 2n + 1. Using the operation of
“ternarization”, we can assign a morphism 7 = ter(yp,) over a ternary
alphabet to a pair of amicable Sturmian morphisms. We show that such 7
is a 3iet-preserving morphism. Moreover, we show that the set

Myer = {ter(gp, w)‘go, 1) amicable morphisms} (1)

is a monoid, but it does not cover the whole monoid Msjet.

We also study the incidence matrices of morphisms 1 € Mie.. From
the definition of amicable Sturmian morphisms ¢, we can derive that ¢
and v have the same incidence matrix A € N?*2| where det A = +1. As
shown in [13], for every matrix A = (1 ) with det A = £1, there exist
po + p1 + qo + p1 — 1 Sturmian morphisms. We will show the following
theorem concerning the number of pairs of amicable Sturmian morphisms

with a given matrix.

Theorem 1. Let A = (0 %) € N?%2 be a matrix with det A = +1. Then
there exist exactly

m

m(||A|| —-1) +§(detA—m) (2)

pairs of amicable Sturmian morphisms with incidence matrix A, where m =
min{po + p1,q0 + ¢1} and [|[A| =po +p1 + q0 + a1

Moreover, for a given matrix A, we will describe all matrices B € N3*3
such that B is an incidence matrix of n = ter(y, 1) for amicable Sturmian
morphisms ¢, 1 with incidence matrix A.
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2 Preliminaries

2.1 Words over a finite alphabet

Besides the infinite words, we consider finite words over the alphabet A. We
write w = wowy - - - wn_1, where w; € A for all : € N, i < n. We denote
by |w| the length n of the finite word w. We denote by |w|, the number
of occurrences of a letter a € A in the word w. The set of all finite words
on the alphabet A including the empty word € is denoted by A*. The set
A* with the operation of concatenation is a monoid. On the set A* we
define a relation of conjugation: w ~ w', if there exists v € A* such that
wv = vw'. A morphism from A* to B* is a mapping ¢ : A* — B* such that
p(vw) = p(v)p(w) for all v,w € A*. It is clear that a morphism is well
defined by images of letters p(a) for all a € A. If A = B, then ¢ is called a
morphism over A.

The set of infinite words over the alphabet A is denoted by AYN. The
action of a morphism can be naturally extended to an infinite word (u;);en
putting p(u) = p(ug)p(u)p(ug)---. If an infinite word u € AN satisfies
o(u) = u, we call it a fized point of the morphism ¢ over A.

To a morphism ¢ over A we assign an incidence matriz M, defined by
(My)ay = |¢(a)l, for all a,b € A. To a finite word v € A* we assign a Parikh
vector M, defined by (M,), = |v|, for all b € A.

The language of an infinite word u is the set of all its factors. Let us recall
that a finite word w € A* is a factor of u = (u;);en, if there exist indices
n,j € N such that w = upupy1 -+ - upyj—1. The language of an infinite word
is denoted by L(u).

It is known that the language of neither Sturmian nor 3iet word depends
on the point zp € [0,1), the orbit of which the infinite word codes. It
depends only on slope ¢ or parameters «, 3.

The (factor) complezity of an infinite word w is a mapping C, : N — N,
which returns the number of factors of w of the length n, thus C,(n) =
#{w € L(u)||w| = n}. It is easy to see that a word u is periodic if and
only if there exists ng € N such that Cy,(ng) < ng.

2.2 Interval exchange

We consider Sturmian words, i.e. aperiodic words given by exchange of 2
intervals with permutation (2, 1), and words given by exchange of 3 intervals
with permutation (3,2,1). Let us recall that general r-interval exchange
transformations were introduced already in [11].

Two-interval exchange. The 2-interval exchange transformation S is a
mapping S : [0,1) — [0,1). It is determined by its slope € € [0,1] and is
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given by

z+1—¢ if x€]0,¢)
Sz =
r—¢ if zele1).

The orbit of a point zg € [0,1) with respect to the transformation S, i.e.
the sequence g, Szg, S?xo, ... can be coded by an infinite word u = (ui)2,
on the binary alphabet {0,1}. The infinite word is given by
0 if Siﬂio € (0,¢),
T SO ®)
1 if S'zg € [8, 1).

It is a well-known fact that for an irrational €, the word v is Sturmian. Using
the same construction on the partition of the interval (0, 1] into (0, ]U (e, 1],
we again obtain a Sturmian word. On the other hand, every Sturmian word
can be obtained by one of the above two constructions. The set of Sturmian
words will be denoted by Wsturm-

In [12], the authors show that Sturmian words are the aperiodic words
with minimal complexity, i.e. C,(n) =n+ 1 for all u € Wsgyrm and n € N.
We can see that

S'zo = {xg —ic} forall =z € [0,1), (4)

where {x} = = — |z] denotes the fractional part of a number = € R. Then
u; = |@xo —ie] — |xo— (i+ 1)e], which is exactly the formula how [12] define
mechanical words.

We will use another fact about two-interval exchange. Let ¢ € Mgturm
be a Sturmian morphism. Then the word ¢(a) for a € {0,1} codes two-
interval exchange with the slope % We should see this from the Lemma
2.1.15 in [12]. The word a* is a factor of some Sturmian word, hence the
word ¢(a)" is balanced for any k € N, which means that the infinite word
u = p(a)” = p(a)p(a)p(a)--- is balanced and periodic, thus it is rational
mechanical. In our terms, this means that it codes a rational 2-interval
exchange; it is as well shown there that the slope of the transformation is

‘U‘o

exactly ol

Three-interval exchange. The 3-interval exchange transformation 7T is
determined by two parameters «, 5 € (0,1) satisfying o + 5 < 1. Using
parameters «, § and v = 1 — a — [ we partition the interval [0,1) into
I4=[0,a), Ip =[a,a+ ) and Ic = [a+ ,1). The mapping T is given by

r+ B+ if x € ly,
Tr=qz—a+~vy if z€Ip,
r—a—p0 if x€lg.
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The orbit of a point x¢ € [0, 1) with respect to the transformation 7" is coded
by a word u = (u;);2,, over the ternary alphabet {A, B, C}:

w =X if Tlzgelx.

Similarly to the case of 2-interval exchange transformation, we can define the
exchange of 3 intervals using the partition (0, 1] = (0, o]U(«, a+5]U(a+03, 1].
If i%% is irrational, the infinite word w is aperiodic, and we call it a Jiet word;
the set of these words is denoted by Wsiet. For combinatorial properties of
3iet words, see [8].

Aperiodic words coding 3-interval exchange transformations, called here
3iet words, have the complexity C,(n) < 2n + 1 for all n € N. If a 3iet
word u € Wsie satisfies Cy(n) = 2n + 1 for all n € N, we call it a non-
degenerate 3iet word; otherwise we call it a degenerate 3iet word and it is a

quasi-Sturmian word (see [7]).

2.3 Standard pairs and standard morphisms

In [13], the notion of standard pairs is introduced. If we define two operators
on pairs of words L, R: A* x A* — A* x A* as

L(z,y) = (z,zy),  R(z,y) = (yz,y),

we say that a pair (z,y) is a standard pair, if it can be obtained from the
pair (0,1) by applying the operators L and R finitely many times.

We say that a binary morphism ¢ is standard, if there exists a standard
pair (x,y) such that

€, or QO(O) =Y,
p(1) =y, p(1) ==

The authors of [13] show the close connection between the standard
morphisms and all the Sturmian morphisms:

1. Every standard morphism is Sturmian.

2. For every matrix A € N?*2 with det A = %1, there exists exactly one
standard morphism ¢ with incidence matrix M, = A.

3. Every Sturmian morphism ¢ € Mggum is a right conjugate to some
standard morphism . Let us recall that a morphism ¢ over A is a
right conjugate to ¢, if there exists a finite word v € A* such that

Y(a)v =vp(a) for all letters a € A.
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2.4 Amicable words and morphisms

In the article [4], authors show the close connection between 3iet and Stur-
mian words using two morphisms og1, 019 : {4, B,C}* — {0, 1}* given by

o01(A) =0, o10(A) =0,
001(B) = 017 UIO(B) = 107
0'01(0) == 1, 0'10(0) =1.

In [4], the following theorem is proved.

Theorem 2. An infinite ternary word u € {A, B, O} is a 3iet word if and
only if the words o¢1(u) and o10(u) are Sturmian.

This theorem motivated the authors of [1] to introduce the relation of
amicability of words.

Definition 3. Let w,w’ € {0,1}*, let b € N. We say that w is b-amicable
to w', if there exists a factor v € {A, B, C'}* of some 3iet word such that

w:o’Ol('l))7 wlzalo(’u) and ‘U’B :b

We say that w is amicable to w', if w is b-amicable to w’ for some b € N,
and we denote it by w oc w'.

The ternary word v is called a ternarization of w and w’, and we write
v = ter(w,w’).

It is easy to see that if w o w’, then they are factors of the same Sturmian
word and their Parikh vectors coincide.

In [1], the notion of “amicable words” plays a crucial role in enumera-
tion of words with length n occurring in a 3iet word. In [2], the authors
investigate ternary morphisms that have a non-degenerate 3iet fixed point
using the following notion of amicability of two Sturmian morphisms.

Definition 4. Let ¢, be Sturmian morphisms over the alphabet {0,1}.
We say that ¢ is amicable to 1, if

(0) o< 1(0),
(01) o 9(10)
and (1) < (1).

We denote this relation by ¢ o< ¢p. The morphism 7 over the ternary alpha-
bet {A, B,C}, given by
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is called the ternarization of morphisms ¢ and ), and is denoted by n =
ter(p, ). Set of these n is denoted by Me;.

The article [2] states the following theorem:

Theorem 5. Let n be a ternary morphism with non-degenerate 3iet fixed
point. Then n € Mier or n° € Mier.

3 Main results

3.1 Globally 3iet-preserving morphisms

Analogously to the terminology introduced for Sturmian words and mor-
phisms in [6], the ternarization 7, having a 3iet fixed point, is locally 3iet-
preserving, i.e. there exists u € Whier such that n(u) € Wiaiet. We now prove
a partial result about (globally) Siet-preserving morphisms, i.e. ternary mor-
phisms 7 such that

n(u) € Wsier for all  u € Wiies.

Proposition 6. Let nn = ter(yp, ¢) for amicable Sturmian morphisms ¢ 1.
Then 1 is a globally 3iet-preserving morphism.

Proof. Directly from definitions we see that

a01m(A) = ¢(0), o01m(B) = ¢(01), 001m(C) = ¢(1),
a10n(A) = ¥(0), a1on(B) = 9(10), a10n(C) = ¥(1).
Therefore
onn(v) = poo1(v)  and  o1n(v) = Poio(v) (5)

for any factor v of a 3iet word u € Wsiet. According to Theorem 2 we get
that o1 (u) and o19(u) are Sturmian words, and since ¢ and 1) are Sturmian
morphisms, we obtain that o¢17(u) and o19m(u) are Sturmian words as well,
which means, according to the same theorem, that the word n(u) is 3iet. [

Proposition 7. Let p; «x v; be Sturmian morphisms, for i = 1,2. Then

ter(p1, 1) o ter(p2, 1) = ter(p1 o v2,11 0 ¥2).

Proof. It can be shown that the relation of amicability is preserved by
composition of morphisms. More precisely @12 x ¥112. Denote 71 =
ter(p1,vY1), n2 = ter(pa2,12). Using the relation (5), we see that for all
ve{A B,C}H
o01mn2(v) = p1001m2(v) = P1p2001(v)
and  o10mmn2(v) = Yro10m2(v) = Y1h2010(v).

But this means that n1my = ter(y1p2, ¥112). O
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As a consequence of previous two propositions, we can state the following
theorem.

Theorem 8. The set My, of all ternarizations of amicable Sturmian mor-
phisms with the operation of composition of morphisms is a sub-monoid of
the monoid Msie of all globally 3iet-preserving morphisms.

Unfortunately, M e, ;Cé Masiet. Consider for example the morphism
n(A) = B, n(B) = CAC, n(C) =C. (6)

As shown in [9], this morphism is 3iet-preserving, but it can be easily verified
that it is not a ternarization of any pair of Sturmian morphisms, using the
following statement.

Proposition 9. A ternary morphism 7 is a ternarization, i.e. 7 € Mgy, if
and only if it satisfies

0'0117(B) = 0017](140) and 01077(3) = 01077(014).

Proof. The implication (=). Suppose n = ter(y,1). According to (5) we
get,

oo1n(B) = o01(B) = ¢(01) = vo01(AC) = on1(AC),
0'1077(3) == 1,[)0'10(.8) == 1/}(10) = 1[)0'10(014) = 0'1017(0/1).

The implication (<). Define morphisms ¢, ¥ as

Immediately we get ter(¢(0),1(0)) = n(A) and ter(¢(1),4(1)) = n(C). The
words (01) and (10) satisfy ¢(01) = 0g1n(AC) = opin(B) and (10) =
o10n(CA) = o19n(B), which means that ter(¢(01),1(10)) = n(B). O

For the morphism (6), we get gp1m(B) = 010 # 001 = 091n(AC). An-
other even simpler example of a 3iet-preserving morphism that is not a
ternarization is the morphism interchanging the letters A and C.

3.2 Pairs of amicable Sturmian morphisms

Now, our goal will be to determine the number of amicable pairs of mor-
phisms with incidence matrix A of det A = +1. We will use the notion of
b-amicable morphisms.

Definition 10. Let ¢ and ¥ be binary morphisms and let b € N. We say
that ¢ is b-amicable to v, if ¢ is amicable to 1) and the number of occurrences
of B in ter(yp(01),(10)) is b.
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We now determine the numbers of pairs of b-amicable Sturmian mor-
phisms. The following proposition and the Theorem 1 were already proven
n [10]. We provide a more straightforward proof.

Proposition 11. Let A = (}° %) € N>*? be a matrix with det A = +1
and b € N. Put p = py+ p1, ¢ = qo+ q1. Then the number ca (b) of pairs of
b-amicable morphisms with matrix A is equal to

|A|l—b if det A =+1 and 1 <b < min{p,q},
ca(b) =q|Al|—b—2 if detA=—-1 and 0<b<min{p,q} —1,
0 otherwise.
First, let us state the following lemma.

Lemma 1. Let A = (}°%) € N2%2 be a matrix with det A = +1 and
beN. Put p=py+p1,q=qo+q1 and N =p—+q. Let S be a two-interval
exchange with the slope p/(p+ q). Let w'®) be a word of the length N that
codes S with the start point k/N, for k € {0,...,N — 1}.

Then w® is b-amicable to w® if and only if 0 < b < min{p, q} and
k—k=0.

Proof. Using (4), we see that S‘(k/N) = (k — ip)/N (mod 1), which is
equivalent to NS*(k/N) = k —ip (mod N). We know that the numbers p
and N are co-prime, thus the mapping f; : {0,...,N -1} — {0,...,N —1}
given by the congruence fi(i) = k — ip (mod N) is a bijection. As well,
i)~ Ji() =k~ k (mod N).

Denote m = min{p, ¢} and b = k — k. Consider the following cases:

(b < 0) We shall see that w®) is lexicographically larger than w®

1 € N is the first position such that wz(k) #* wz@), then wz(k) =1 and

wl@ = 0. Directly from the definition of amicability, if w*) w® and

, le. if

wh) £ w(’%), then w® is lexicographically smaller than w®). These
two facts make a contradiction.

(b€{0,...,m}) Let I, C {0,...,N — 1} be a set of indices i such that
w® = q and wgk) + a, for both a = 0,1. To show that w®) is b-

7

amicable to w(’_“), we need to show that ¢ € I implies ¢ + 1 € I; and

#Io = #1I1 = b. The fact that |w®| = |w®| , follows to #Io = #1I.

Let i be an index such that fx(i) € [p — b,p), thus wl(k) = 0. Then

f#(@) € [p,p +b), thus wl(k) = 1. This means i € Iy. For these i, we
have fr(i+1) € [N —b,N) and fz(i + 1) € [0,b), which means i € ;.
There are exactly b such indices .

It remains to show that we covered the whole set Iy. Suppose fj(i) <
p — b, then f;(i) < p and wgk) = 0, which means i ¢ Iy. Suppose
fx(@) > p, then wgk) = 1, which means i ¢ Ij.
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(be{m+1,...,N —m —1}) Let i be such index that fx(i) =p — 1.
Suppose p < ¢. Then fi(i+1) = N -1, fz(i) = b+p—1 and
fi(i+1) = b—1, which means that wgk)wlgf_)l =01 and wgk)wgi)l =11.
Suppose p > q. Then fi(i +1) = N -1, fz(i) = b—q— 1 and
f7(i+1) =b—1, which means that wgk)wg_’f_)l =01 and wgk)wﬁ_)l = 00.
Both these are in contradiction with w® o w®).

(be{N—-m,...,N —1}) We can see that N —m = p + ¢ — min{p,q} =
max{p, q}.

Suppose p < gq. We will show that j = 2p solves the inequalities

p<j—p<N, 0<j+b—p—N<p.

We have 2p > p; 2p < p+q=N; 2p+b—N > 2p+qg— N = p;
2p+b—N <2p< N;2p—p=p>p;20—p=p< N; 2p+b—p—N =
p—(N=-b)<p;2p+b—p—N=b—(N—-p)=b—q>0.

Let 4 be index such that fi(i) = j. Then the previous inequalities
give wgk)wg_]?l =11 and wgk) wl(ﬁ)l = 10, which is in contradiction with
w®  wk).

Suppose p > q. We will show that j = max{2p — N, N — b} solves the

inequalities
p<j—p+N<N, 0<j+b—p<p.

We have j > N —b >0, thus j >0;2p— N =p+ (p— N) < p and
N—b<p,thusj <p;j> N—b,thus j+b—N >0; 2p—N)+b—N =
p—q—(N—b)<pand (N—b)+b—N=0<p, thus j+b— N < p;
j>2p—N,thus j—p+N > p; j—p < 0, thus j—p+N < N; j > N—b,
thus j+b—p > N—b+b—p=q>0; 2p—N)+b—p < 2p—b+b—p=0p
and (N —-b)+b—p=q<p,thus j+b—p<p.

Let i be index such that fi(i) = j. Then the previous inequalities

give wgk)wgi)l = 01 and wl(k)wﬁ)l = (00, which is contradiction with
w®) oc wk), O

Proof of Proposition 11. Let S be a 2-interval exchange transformation with
the slope ¢ = p/N. Let k € Z and denote w® the word of the length

N = ||A|| that codes the orbit of the point {k/N} with respect to S. We
know that for every Sturmian morphism ¢ with M, = A, there exists
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k € {0,...,N — 1} such that ©(01) = w®, we will denote this morphism
k),

Let ¢gstq be a standard morphism with M, = A. Every Sturmian
morphism p*) is a right conjugate to @gq, which means that there exist
words v,v" € {0,1}x such that

p(ad’) =001 and ¢(d'a) = v10V/,

where letters a,a’ satisfy aa’ = 01 for det A = +1 and aa’ = 10 for det A =
—1. This gives that ¢(aa’) is 1-amicable to p(a'a).

Morphism %) is b-amicable to Lp(’_“) if and only if the following conditions
are satisfied:

1. Sp(k) (01) is b-amicable to 90(’5)(10);
2. p®)(01) is amicable to o*)(01);
3. Parikh vectors satisfy M(p(k)(o) = M¢<’5>(0)‘

The 2nd and 3rd conditions assures that ¢®)(0) oc ©®(0) and p*) (1)
PP (1).
Let us discuss the cases det A = +1 and det A = —1.

(det A = +1) We know that ©*)(01) is 1-amicable to ¢¥)(10), which im-
plies p*)(10) = w*+Y. This excludes k = N — 1.

The 3rd condition is immediately szitisﬁed by Myw = Mx). To
satisfy the 1st condition, we need (k 4+ 1) — k = b. To satisfy the
2nd condition, we need 0 < k — k < min{p,q}. These facts gives
0<k<k<N-2and1<b<min{p,q}. For each such b, we have
exactly N — b pairs of such indices (k, k).

(det A = —1) We know that »(*)(10) is 1-amicable to »*)(01), which im-
plies ©#)(10) = w*~. This excludes k = 0.
The 3rd condition is immediately sa_btisﬁed by Myw = M x. To
satisfy the 1st condition, we need (kK — 1) — k = b. To satisfy the
2nd condition, we need 0 < k — k < min{p,q}. These facts gives
1<k<k<N-1and0 <b<min{p,q} — 1. For each such b, we
have exactly N — b — 2 pairs of such indices (k, k). O

Proof of Theorem 1. The formula (2) can be obtained by summation of
numbers ca (b) from the previous proposition. O
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3.3 Matrices of ternarizations

To each pair of amicable Sturmian morphisms, an incidence matrix of its
ternarization is assigned. We now fully describe which matrices from N3*3
are matrices of ternarizations.

Theorem 12. A matrix B € N3%3 is the incidence matrix of the ternar-

ization of a pair of amicable Sturmian morphisms if and only if there exist

matrix A = (50 %) € N**2 with det A = A = +1 and numbers by, b; € N
such that

bo (p1+4q1)—b1(po+qo0)
(a) Po+go+p1+q1
(b) 52 <bo+by < min{po+p1, 0 + a1} — 552,

b
() B=P (A bi’> P!, where P — (%??).

<1,

00 A 010

Proof of the implication (=). Let us denote p = pg + p1, ¢ = qo + q1, N =
p+qand b=by+ by +A. Then we can see that condition (c) gives

po—bo by qo— bo
B=|p-0 b q-b|. (7)
p1—br b1 @1 —b

The fact that (c) is necessary for B to be an incidence matrix of a ternar-
ization is shown in [3]. Condition (b) is necessary according to Proposition
11, so we only need to show that (a) is satisfied for the matrix of the ternar-
ization 1 = ter(p, 1) of a pair of amicable Sturmian morphisms ¢ o 1.

We can see that A = (52 %) is necessarily an incidence matrix of both
@ and 9. Let S be a 2-interval exchange transformation with rational slope
e = p/N. Then there exist k,k € {0,..., N — 2} such that ¢(01), ¥(01)
code transformation S with start points zo = k/N, Zo = k/N; moreover,
k—k=0b—A. We need to determine the value of by = [ter((0),(0))] 5.
The number by is equal to the number of indices i € {0,1,...,po + g0 — 1}
such that S'zg € [(p —b+A)/N, p/N), because for exactly these ¢, we have
Sizg < p/N < Sz,

Let X = {{zo —ip/N}|i € N0 < i < po+q}. Putp =p+ AJk,
and let Y = {{zo —ip//N}|i € N,0 < i < py+ qo}. We can see that 0 <
A((wo—ip/N)—(zo—ip'/N)) = i/kN < 1/N. Thus zo—ip/N € [#, %)
if and only if

p=b p—17 —
20— ipl /N € (Nb,lN] in the case A =+1,
~—,%) in the case A =—1.

(8)

S

In both cases, the length of the interval is %. From det A = A, it is easy
to see that p'/N = po/(po + qo). Because pg is co-prime to pg + qo, we get
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{{ivo/(Po+qo0)}|i € N,0 <i < po+qo} = {i/(po+qo)|i € N,0 < i < po+qo}.
But this means that the set Y is uniformly distributed on the interval [0, 1),
which gives

o= #(X 0 [2RE2 F) ) {181, 191},

where 5 = (po+ qo)% is number of elements of Y multiplied by the length
of the interval in (8). Together we get

16— bo| <1, 9)
which is equivalent to condition (a). O

The proof of the other implication is divided into several lemmas.

Lemma 2. Let A = (}? %) € N>*2 with det A = A = £1, let b € N with
L8 < b <minf{po + p1, 0 + @1} — 55

Denote N = |A|| and p = py + p1 integers, I = [p_?V+A, %) an interval,
X = {{k/N},5{k/N},5*{k/N},...,5Pot0~ 1k /N}} aset of numbers for
any k € Z, where S is the 2-interval exchange with the slope € = p/N, and
denote 3 = 229 (b — A).

Then for all by € {|3],[3]} such that

bp < min{pg,q0} and b— A —by <min{pi,q}, (10)
there exist k', k" € {0,...,N — 1}, k¥’ # k" such that
#(Xk/ﬂf) :#(Xk//ﬂf) = by. (11)

Proof. Denote r(k) = #(X N1I) for k € Z. We can see that fo:_ol r(k) =
(b— A)(po + qo). According to (9), we know that r(k) € {|3],[8]} for all
k€ Z. Let

Cr=#{ke{0,....N—1}r(k) = 3]},
Cu=#{ke{0,....N —1}|r(k) = [3]}.

We will proof the lemma by contradiction. Suppose C, or Cyy € {0,1}. The
numbers satisfy equations

Crlp] +CU{,31 =NgB and Cp+Cy=N.

If Cr, =0 or Cy = 0, necessarily § € N and (11) is satisfied for all k € Z.
Otherwise, there is a unique solution

Cp=N{-p} and Cy = N{G}.
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Using relation poN — (po + p1)(po + qo) = A, we get

Cv=(po+q)b—A) (mod N)
b—A=—-A(po+p1)Cy (mod N).

Suppose Cy = 1 or Cp, = 1, i.e. Cy = £1. Then b = (pp + p1) + A or
b= (q0+q)+ A. For A = +1, this is in contradiction with the conditions.
For A = —1, discuss the following two cases.

1. Suppose b = (po + p1) + A. This means Cyy = 1. But then by = [F] =
[%] = po + 1 does not satisfy condition (10) of the lemma.

2. Suppose b = (qo + q1) + A. That means C, = 1. But then by = |3 =
go— 1 and b — A — by = q1 + 1 again does not satisfy (10). O

Lemma 3. Let A = (29 %) € N>*2 with det A = A = £1, let b € N with
L8 < b <min{po +p1,q0 + @1} — 52

Denote N = |A|| and p = py + p1 integers, I = [ , N) an interval,
X, = {{k/N},S{k/N},S*{k/N},...,SPot®0"1{k/N}} a set of numbers
for any k € 7, where S is the 2-interval exchange with slope ¢ = p/N, and
denote 3 = 22190 (b — A). Define morphisms ¢y, for k € Z in the following
way:

p—b+A p
N

e the word ¢ (0) codes {k/N},S{k/N},..., Spotwo~1{L/N};
e the word ¢y (1) codes SPo+®©{k/N}, ..., SN-1{k/N}.

Let ko € Z such that #(Xy, N I) = #(Xyy—p N 1). Then

Pl X Pry+b—A OI (pkofp o8 @ko*p+b*A7

and the number of B’s in the ternarization of the images of the letter 0 is
#(Xko ni ) .

Proof. Let us take the orbit
{ko/N}, S{ko/N},..., SPot90 ks /N}. (12)

Let t*) be a word of the length py + g that codes orbit of transformation
S to the alphabet {0,0’,1,1'} with a different code than (3):

N
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From definition of S, we see that tgk) =0 & tz(-_’i)l = 1'. Define two mor-
phisms 7,7 : {0,0',1,1"}* — {0,1}* as

7(0) =0, 7(0') =0, (1) =1, (1) =1,

7(0) =0, (0) =1, (1) =1, (1) = 0.

If t(*) does not start with 1’ and does not end with 0/, then the word ¢ (0) =
r(t®) is ‘t(k’)
H(X, N 1),
We know that S{ko/N} = {(ko — p)/N}, which means that there exist
letters a,b € {0,0’,1,1’} such that t(0)g = pto=P) and a = 0/ < b = 0/,
because ‘t(k(’) v = ’t(ko_p)lo,. If @ = 0 then t*0) does not end with 0/,
because in that case b = 1'. If a # 0’ then t*0~P) does not start with 1’ and
does not end with 0’. Putting these facts together with facts from the proof

0,—amicable to T/(t(k)) = ¢@r+b-a(0). Moreover, |t(k) o =

of Proposition 11 we get the statement. O

Lemma 4. Let A = (P ) € N**2 with det A = A = £1, let b € N with
52 < b <min{po + p1, a0 + a1} — 52

Denote N = ||A]|, ¢ = qo + ¢1 and p = pg + p1 integers, [ = [pfﬁj\;rA, %)
an interval, Xj, = {{k/N},S{k/N},S*{k/N},...,SPot®=1E/N}} a set of
numbers for any k € 7, where S is the 2-interval exchange with the slope
e = p/N, and denote 3 = P29 (b — A).

Let ko € Z be a number such that if A = —1 and b = min{p, q} — 1 then

—1 (mod N) in the casep > q,
ko # { (mod ) (14

p—b—1 (mod N) in the casep < q.
Then
#H(Xpo NI) = #(XpgapNI) or #(XgoNI) =H#(Xpg—pNI).

Proof. Define the words t*) by (13) in the same way as in the previous proof.
Denote ¢ = pg + qo. Then we know that there exist letters ag,...,apr1 €
{0,0/,1,1'} such that

ko+p) _
t*oFP) = qparas - - ap_1,

k) = ayag- - ap_yap,
t(ko_p) = a]2...az_1a,£a€+1‘
Remind that #(Xg,4pN1) = ‘t(k) ‘0,. The proof will be done by contradic-
tion. Suppose that ‘t(koﬂ’)‘o, #* }t(ko)‘o, #* ‘t(ko_p)‘o,. There are only two
possible values of these numbers, thus ‘t(k(’“’) ‘0, = ‘t(ko_p) ‘0,. This together
gives either ag = agy1 = 0 or a; = ay = 0. It means that there exist
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el = [pfﬁ’\fA, %) and w = +1 such that Sttwe € 1. We can take € € %Z.

Since fp = pgN — A, we have

({+w)p _wp—A

ltwe — ¢
STreE=¢ N =W (mod 1).
This gives
bhrwg o _ p — wA
SR N
y p—wA q+wA
&= —1=-1T=

or ST =g N

This enforces b—1— A > min{p, ¢} — 1 for the interval I to be large enough
to contain both ¢ and S“Tv¢.

For A = +1, this is in contradiction with b < min{p, ¢}.

For A = —1 we get only one admissible b = min{p,q} — 1. If p =

min{p, ¢}, it gives w = —1 and £ = pfﬁfl, which implies kg = p—b—1

(mod N). If ¢ = min{p,q}, it gives w = +1 and £ = %, which implies
ko = —1 (mod N). Both these cases are in contradiction with (14). O

Proof of the implication (<). From [3], the incidence matrix of the ternar-
ization ter(y, ) is fully described by the matrix A and numbers by and
b=bo+ b; + A. The condition (a) is equivalent to (9) and it gives at most
two values of bg. If 3 € N, there is nothing to do as we have at least one pair
of b-amicable morphisms ¢ x ¢ for A, and its incidence matrix satisfies all
three conditions.

For 3 ¢ N, we want to show that for both by € {[3],[5]} there exist
¢ o 1 with |ter(¢(0),7(0))| 5 = bp. Because the elements of the matrix B
are non-negative, the condition (10) of Lemma 2 is satisfied and we have two
different k', k”. At least one of them satisfies (14). Lemma 4 then provides kg
satisfying the conditions of Lemma 3 that gives a pair of amicable Sturmian
morphisms, ternarization of which has the incidence matrix B. ]

4 Conclusions and open problems

Matrices of 3iet-preserving morphisms were studied in [3]. The authors give
a necessary condition on B € N3*3 to be an incidence matrix of a 3iet-
preserving morphism:

1 1
BEB' = +E, where E=|[-1 0 1
-1 -1 0

However, this condition is not sufficient. In our contribution, we study 3iet-
preserving morphisms 7 = ter(y, ¥) arising from pairs of amicable Sturmian
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morphisms ¢ 1. Our Theorem 12 gives sufficient and necessary condition
for any matrix B € N3%3 to satisfy B = M,, for some ternarization 7 =

ter(p, ).

It remains to answer the question about the role of the monoid
Mgy = {ter(gp, @b)’gp, 1) amicable morphisms}

in the whole monoid Mgs;et of all 3iet-preserving morphisms.
It seems that using similar proof as [2] for Theorem 5 we can proof the
following statement.

Conjecture. Let n € Msiet. Then there exists i € {0,1,2,3} such that

no&; € Myer, where &, ..., & are 3iet-preserving morphisms,
50(‘4) = Av 51("4) = Ca 52("4) = B7 53(14) = Ba
§(B)=B, &(B)=DB, &(B)=ACA,  &(B)=CAC,
60(0) = Ca él(c) = Av 62(0) = A7 53(0) =C.
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