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Abstract

Any amicable pair ¢, 9 of Sturmian morphisms enables a construction
of a ternary morphism 7 which preserves the set of infinite words coding
3-interval exchange. We determine the number of amicable pairs with
the same incidence matrix in SL(2,N) and we study incidence matrices
associated with the corresponding ternary morphisms 7.

1 Introduction

Sturmian words are well-described objects in combinatorics on words. They
can be defined in several equivalent ways [5], e.g. as words coding a two-
interval exchange transformation with irrational ratio of lengths of the inter-
vals. Morphisms preserving the set of Sturmian words are called Sturmian
and they form a monoid generated by three of its elements (see [6, 11]). Let
us denote this monoid by Mgturm-

In this paper, we consider morphisms preserving the set of words coding
a three-interval exchange transformation with permutation (3,2,1), the so-
called &iet words. We call these morphisms Siet-preserving. Monoid of these
morphisms, denoted by Maiet, is not fully described. It is shown (see [9]) that
the monoid Ms;et is not finitely generated. Recently, in [2], pairs of amicable
Sturmian morphisms were defined. The authors used this notion to describe
morphisms that have as a fixed point a non-degenerate 3iet word, i.e., 3iet
word with complexity C(n) = 2n + 1. Using the operation of “ternarization”,
we can assign a morphism 1 = ter(p,1)) over a ternary alphabet to a pair
of amicable Sturmian morphisms. We show that such 7 is a 3iet-preserving
morphism. Moreover, we show that the set

Mier = {ter(go,w)‘go,w amicable Sturmian morphisms} (1)



is a monoid, but it does not cover the whole monoid Magjet.

We also study the incidence matrices of morphisms 7 € Mye. From
the definition of amicable Sturmian morphisms ¢, ¥ we can derive that ¢
and v have the same incidence matrix A € N?*2, where det A = +1. As
shown in [13], for every matrix A = (P9 1%) with det A = £1, there exist
Po + p1 + qo + p1 — 1 Sturmian morphisms with incidence matrix A. We
will show the following theorem concerning the number of pairs of amicable
Sturmian morphisms with a given matrix.

Theorem 1. Let A = (59 %) € N2*2 be a matrix with det A = +1. Then
there exist exactly

m(||A] 1) + 7 (det A - m) (2)

pairs of amicable Sturmian morphisms with incidence matrix A, where m =
min{po + p1,qo + ¢1} and ||A| =po+p1 +q + ¢

Moreover, for such a given matrix A, we will describe all matrices B €
N3*3 such that B is an incidence matrix of 7 = ter(i, 1) for amicable Stur-
mian morphisms ¢, 1) with incidence matrix A.

2 Preliminaries

Interval exchange. We consider Sturmian words, i.e., aperiodic infinite
words given by exchange of 2 intervals with permutation (2,1), and words
given by exchange of 3 intervals with permutation (3,2, 1). Let us recall that
general r-interval exchange transformations were introduced already in [10].
The 2-interval exchange transformation S : [0,1) — [0,1) is determined by
its slope € € (0,1) and is given by

x+1—e if z€]0,¢)
Sz =
x—e€ if xzelel).

The orbit of a point zp € [0,1) with respect to the transformation S, i.e.,
the sequence o, Sxo, 5?70, . .. can be coded by an infinite word u = (u;)$2,
over the binary alphabet {0,1}. The infinite word is given by

_Jo if Stz elo,e),
1 if Stz e e ).
It is a well-known fact that for an irrational e, the word v is Sturmian. Using

the same construction on the partition of the interval (0, 1] into (0,e]U (e, 1],
we again obtain a Sturmian word. On the other hand, every Sturmian word



can be obtained by one of the above two constructions. The set of Sturmian
words will be denoted by Wsturm-

The 3-interval exchange transformation 7" is determined by two param-
eters a, 3 € (0,1) satisfying o + < 1. Using parameters «, ( and
v =1—a— 3 we partition the interval [0,1) into I4 = [0, ), Ip = [, a+ 3)
and Io = [a+ ,1). The mapping T is given by

c+ B4+ if x €y,
Tr=<qx—a+y if z€lp,
r—a—p0 if x € lco.

The orbit of a point xg € [0, 1) with respect to the transformation T is coded
by a word u = (u;)52, over the ternary alphabet {4, B,C}:

w, =X if Tixg elx.

Similarly to the case of 2-interval exchange transformation, we can define the
exchange of 3 intervals using the partition (0, 1] = (0, a]U(«, a+G]U(a+03, 1].
If % is irrational, the infinite word u is aperiodic, and we call it a Siel word;
the set of these words is denoted by Wsiet. For combinatorial properties of

3iet words, see [8].

Words over a finite alphabet. Besides the infinite words, we consider
finite words over the alphabet A. We write w = wowy - - - w,_1, Where w; € A
for all i € N, i < n. We denote by |w| the length n of the finite word w.
We denote by |w]|, the number of occurrences of a letter a € A in the word
w. The set of all finite words over the alphabet A including the empty word
€ is denoted by A*. The set A* with the operation of concatenation is a
monoid. On the set A* we define a relation of conjugation: w ~ w', if there
exists v € A* such that wv = vw’. A morphism from A* to B* is a mapping
¢ A* — B* such that p(vw) = ¢(v)p(w) for all v,w € A*. It is clear that
a morphism is well defined by images of letters ¢(a) for all a € A. If A= B,
then ¢ is called a morphism over A.

The set of infinite words over the alphabet A is denoted by AN. The
action of a morphism can be naturally extended to an infinite word (u;);en
putting ¢(u) = p(ug)e(u1)p(uz)---. If an infinite word u € AN satisfies
o(u) = u, we call it a fized point of the morphism ¢ over A.

To a morphism ¢ over A we assign an incidence matriz M, defined by
(My)ap = |¢(a)], for all a,b e A.

The language of an infinite word w is the set of all its factors. Let us recall
that a finite word w € A* is a factor of u = (u;)ien, if there exist indices
n,j € N such that w = upup41 - upyj—1. The language of an infinite word
is denoted by L(u).



It is known that the language of neither Sturmian nor 3iet word depends
on the point zy € [0, 1), the orbit of which the infinite word codes. It depends
only on slope € or parameters «, 5.

The (factor) complezity of an infinite word w is a mapping C,, : N — N,
which returns the number of factors of u of the length n, thus Cy,(n) =
#{w € ﬁ(u)‘ lw| = n}. It is shown [12] that any aperiodic word u satisfies
Cu(n) > n+1 for all n € N. Aperiodic words with minimal complexity,
i.e., Cy(n) = n+1, are exactly the Sturmian words. Aperiodic words coding
3-interval exchange transformations, called here 3iet words, have the com-
plexity Cy(n) < 2n + 1 for all n € N. If a 3iet word u € Ws;e satisfies
Cu(n) =2n + 1 for all n € N, we call it a non-degenerate 3iet word; other-
wise we call it a degenerate 3iet word and it is a quasi-Sturmian word (see

[7D)-

Amicable words and morphisms. In the article [4], authors show the

close connection between 3iet and Sturmian words using two morphisms
oo1,010 : {A, B,C}* — {0,1}* given by

O‘m(A) = 0, 0'10(A) = 0,
0'01(B) = 01, O‘lo(B) = 10,
oo1(C) =1, o10(C) =1

In [4], the following theorem is proved.

Theorem 2. An infinite ternary word u € {A, B,C}Y is a 3iet word if and
only if the words o¢1(u) and o10(u) are Sturmian.

This theorem motivated the authors of [1] to introduce the relation of
amicability of words.

Definition 3. Let w,w’ € {0,1}*, let b € N. We say that w is b-amicable
to w', if there exists a factor v € {A, B, C}* of some 3iet word such that

w = o001 (v), w' =o1p(v) and |v|g =0b.

We say that w is amicable to w’, if w is b-amicable to w’ for some b € N,
and we denote it by w oc w'.

The ternary word v is called a ternarization of w and w’, and we write
v = ter(w,w’).

It is easy to see that if w o< w’, then they are factors of the same Sturmian
word and the numbers of occurrences of 0’s and 1’s in w and w’ coincide.

In [1], the notion of “amicable words” plays a crucial role in enumeration
of words with length n occurring in a 3iet word. In [2], the authors investigate
ternary morphisms that have a non-degenerate 3iet fixed point using the
following notion of amicability of two Sturmian morphisms.



Definition 4. Let ¢, be Sturmian morphisms over the alphabet {0,1}.
We say that ¢ is amicable to v, if

(0) o< 1(0),
p(01) o< 3(10)
and (1) oc9(1).

We denote this relation by ¢ o ¢). The morphism 7 over the ternary alphabet
{A, B,C}, given by

n(A) = ter((0),4(0)),
n(B) = ter((01),4(10)),
1(C) = ter(e(1),¥(1))

is called the ternarization of morphisms ¢ and v, and is denoted by n =
ter(p,¥). Set of these n is denoted by Mye.

The article [2] states the following theorem:

Theorem 5. Let n be a ternary morphism with non-degenerate 3iet fixed
point. Then n € Mier or n° € Mier.

3 Main results

Analogously to the terminology introduced for Sturmian words and mor-
phisms in [6], the ternarization 7, having a 3iet fixed point, is locally 3iet-
preserving, i.e. there exists u € Whsier such that n(u) € Wsjer. We now prove
a partial result about (globally) Siet-preserving morphisms, i.e., ternary mor-
phisms 7 such that

n(u) € Wsier for all  u € Whjey.

Proposition 6. Let n = ter(p, 1) for amicable Sturmian morphisms ¢ o 1.
Then n is a globally 3iet-preserving morphism.

Proof. Directly from definitions we see that

o01m(A) = ¢(0), onn(B) = ¢(01), on(C) = (1),
a10m(A) = ¥(0), oron(B) = 1¥(10), o10n(C) = ¢(1).
Therefore
onn(v) =¢oo1(v)  and  o1n(v) = Yoie(v) (3)

for any factor v of a 3iet word u € Wsier. According to Theorem 2 we get
that o¢1(u) and o19(u) are Sturmian words, and since ¢ and 1) are Sturmian
morphisms, we obtain that og17(u) and o19n(u) are Sturmian words as well.

0



Proposition 7. Let ¢; x v¢; be Sturmian morphisms, for i = 1,2. Then

ter(p1, 1) o ter(p2, 1) = ter(p1 o w2, 0 P2).

Proof. It can be shown that the relation of amicability is preserved by compo-
sition of morphisms. More precisely 192  1¥11)2. Denote n; = ter(p1, 1),
N2 = ter(pa,12). Using the relation (3), we see that for all v € {A, B,C}*

co1mn2(v) = p1001m2(v) = Y102001(v)
and  o10m12(v) = Y1010m2(v) = Y11P2010(V).

But this means that 7112 = ter(pipa, ¥112). O

As a consequence of previous two propositions, we can state the following
theorem.

Theorem 8. The set My, of all ternarizations of amicable Sturmian mor-
phisms with the operation of composition of morphisms is a sub-monoid of
the monoid Mas;ey of all globally 3iet-preserving morphisms.

Unfortunately, Mer ; Msiet. Consider for example the morphism
n(4) = B, n(B) = CAC, n(C) =C.

As shown in [9], this morphism is 3iet-preserving, but it can be easily verified
that it is not a ternarization of any pair of Sturmian morphisms. Another
even simpler example is the morphism interchanging the letters A and C,
which is clearly 3iet-preserving.

Now, our goal is to determine the number of amicable pairs of morphisms
with incidence matrix A of det A = £1. We use the notion of b-amicable
morphisms.

Definition 9. Let ¢ and ¢ be binary morphisms and let b € N. We say that

@ is b-amicable to 1, if ¢ is amicable to ¢ and the number of occurrences of
B in ter(p(01),(10)) is b.

Proposition 10. Let A = (5 ) € N?%2 be a matrix with det A = +1 and
b e N. Put p=mpo+p1, ¢ =qo~+ q. Then the number ca(b) of pairs of
b-amicable morphisms with matrix A is equal to

IA| —b if detA =+1 and 1<b<min{p,q},
ca(d) =< JJA||—b—2 if detA=—1 and 0<b<min{p,q} —1,
0 otherwise.!

'Let us recall that |20 2| = po + qo +p1 + q1.



Sketch of the proof. Denote N = ||A||. Let us consider a Sturmian morphism
¢ with incidence matrix A, and let v = (01). Then |v| = N and |v|, =
p. The word v is a factor of some Sturmian word, nevertheless v codes
a 2-interval exchange transformation S with rational slope ¢ = p/N. All
conjugates to v — there are N such words including v itself — arise from
the same transformation coding the sequence

0 1 N -1

N—-1
— e, 4
S N N7 N )

$0,5$0,52$0,..., i) for o —

Consider now a matrix A with det A = +1. For every such matrix, there
exist N — 1 Sturmian morphisms ¢1,...,n_1. One of these morphisms,
the so-called standard morphism ¢gq, satisfies that there exists w € {0,1}*
such that ¢gq(01) = w01 and @sq(10) = w10, which means that @gq is
l-amicable to itself (for details, see [13]).

For all morphisms ¢;, 1 < i < N — 1, the word ¢;(01) is conjugate to
©¢std(01). From this, it can be shown that each of these morphisms is 1-
amicable to itself. Each of these words ¢;(01) codes a sequence (4) with
xo = k;i/N where 0 < k; < N — 2. Using similar tricks as in [1] we can prove
that ¢;(01) is b-amicable to ¢;(10) if and only if 0 < kj —k; = b—1 <
min{p, ¢} — 1.

Combining all these facts the theorem can be proven for det A = +1.
The proof for det A = —1 would be done in a very similar way. O

Proof of Theorem 1. The formula (2) can be obtained by summation of num-
bers ca (b) from the previous proposition. O

To each pair of amicable Sturmian morphisms, an incidence matrix of its
ternarization is assigned. We now fully describe which matrices from N3*3
are matrices of ternarizations.

Theorem 11. A matrix B € N®*3 is the incidence matrix of the ternari-
zation of a pair of amicable Sturmian morphisms if and only if there exist
matrix A = (50 %) € N?*2 with det A = A = £1 and numbers by,b; € N
such that

(a)

(b) % < by + by < min{pg +p1,QO+QI}_%’

0
1].
0

bo (p1+q1)—b1(po+qo)
pPo+qo+p1+q1

<1,

b
(c) B=P (A zif) P!, where P = (%
00 A 0

O



Sketch of the proof. Let us denote p = pg + p1, ¢ = qo + q1, N = p+ q and
b=0bo+ b + A. Then we can see that condition (c) gives

po—bo by qo— bo
B=|p-b b qg—0b|. (5)
1—b1 b1 g —0b

We will sketch the proof for A = +1 as the other case is very similar.
Let us start with the implication =.

The fact that (c) is necessary for B to be an incidence matrix of a terna-
rization is shown in [3]. Condition (b) is necessary according to Proposition
10, so we only need to show that (a) is satisfied for the matrix of the terna-
rization 7 = ter(p, ) of a pair of amicable Sturmian morphisms ¢ o .

We can see that A = (59 2) is necessarily an incidence matrix of both
@ and 1. Let S be a 2-interval exchange transformation with rational slope
e = p/N. Then there exist k, k € {0,..., N —2} such that ¢(01), 1(01) code
transformation S with start points x¢9 = k/N, o = k/N; moreover, k — k =
b—1=0b—A. We need to determine the value of by = [ter(¢(0),(0))|p.
The number by is equal to the number of indices i € {0,1,...,po + g0 — 1}
such that S'zg € [(p— b+ 1)/N,p/N).

Denote by {z} = x — |z] the fractional part of z € R. Then we have
Sixg = {x¢ — ip/N}. Denoting X = {{xo - ip/N}‘i eN,0<i<py+ qo},
we can show that

bo = #(X N[22, %) )e {181,181},
where 3 = 22F90(p — 1). This means that
|3 —bo| <1, (6)
which implies condition (a).

Let us now sketch the proof of the other implication <. From [3], the
incidence matrix of the ternarization ter(yp, v) is fully described by the matrix
A and numbers by and b = by + b1 + A. Let us fix a matrix A and 1 < b <
min{p, ¢} —1. The condition (a) is equivalent to (6) and it gives at most two
values of bg. If B € N, there is nothing to do as we have at least one pair
of b-amicable morphisms ¢ o ¢ for A, and its incidence matrix satisfies all
three conditions.

For 3 ¢ N, we want to show that for both by € {[3], [8]} there exists ¢ o
¢ with by = |ter(¢(0),1(0))| 5. The demonstration needs several statements;
their proofs are too technical to be included in this extended abstract.



1. Let X; = {{k/N},S{k/N},S?{k/N},...,SPot0=Ek/N}} for any
k€ Zand let I = [E=2*L 2) be an interval. For both by € {|8], [3]},
there exist ki, ko € Z such that

#(Xp, N1T) = #(Xp, N1I) =bo and k1 # ky (mod N).

2. Define morphisms ¢y, for k € Z in the following way. The word ¢ (0)
codes {k/N},S{k/N},..., SPot®©=1k/N} and the word (1) codes
Spotao(k/N}, ..., SN=Hk/N}. Let kg € Z such that #(Xg, N 1) =
#(Xpsp N I). Then

Pho X Pho+b—1  OT  Pho+p X Pho+p+b—1-

3. It remains to show that for both by € {|3],[8]}, there exists ko sat-
isfying # (X, N 1) = #(Xkg4p N ). O

4 Conclusions

Matrices of 3iet-preserving morphisms were studied in [3]. The authors give
a necessary condition on B € N3*3 to be an incidence matrix of a 3iet-
preserving morphism:

0 1 1
BEB'" =+E, where E=|-1 0 1
-1 -1 0

However, this condition is not sufficient. In our contribution, we study 3iet-
preserving morphisms 1 = ter(yp, ¥) arising from pairs of amicable Sturmian
morphisms ¢  ¢. Our Theorem 11 gives sufficient and necessary condition
for any matrix B € N3*3 to satisfy B = M,, for some ternarization n =

ter(p, ).

It remains to answer the question about the role of the monoid
Myer = {ter(go, 1p)‘go, 1 amicable morphisms}

in the whole monoid Mas;iet of all 3iet-preserving morphisms.
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