Morphisms preserving the set of words coding three interval exchange

Tomáš Hejda
Department of Mathematics FNSPE
Czech Technical University in Prague
Czech Republic
e-mail: tohe@centrum.cz

Abstract

Any amicable pair φ, ψ of Sturmian morphisms enables a construction of a ternary morphism η which preserves the set of infinite words coding 3 -interval exchange. We determine the number of amicable pairs with the same incidence matrix in $S L(2, \mathbb{N})$ and we study incidence matrices associated with the corresponding ternary morphisms η.

1 Introduction

Sturmian words are well-described objects in combinatorics on words. They can be defined in several equivalent ways [5], e.g. as words coding a twointerval exchange transformation with irrational ratio of lengths of the intervals. Morphisms preserving the set of Sturmian words are called Sturmian and they form a monoid generated by three of its elements (see [6, 11]). Let us denote this monoid by $\mathcal{M}_{\text {Sturm }}$.

In this paper, we consider morphisms preserving the set of words coding a three-interval exchange transformation with permutation $(3,2,1)$, the socalled 3iet words. We call these morphisms 3iet-preserving. Monoid of these morphisms, denoted by $\mathcal{M}_{3 \text { iet }}$, is not fully described. It is shown (see [9]) that the monoid $\mathcal{M}_{3 \text { iet }}$ is not finitely generated. Recently, in [2], pairs of amicable Sturmian morphisms were defined. The authors used this notion to describe morphisms that have as a fixed point a non-degenerate 3iet word, i.e., 3iet word with complexity $\mathcal{C}(n)=2 n+1$. Using the operation of "ternarization", we can assign a morphism $\eta=\operatorname{ter}(\varphi, \psi)$ over a ternary alphabet to a pair of amicable Sturmian morphisms. We show that such η is a 3iet-preserving morphism. Moreover, we show that the set

$$
\begin{equation*}
\mathcal{M}_{\text {ter }}=\{\operatorname{ter}(\varphi, \psi) \mid \varphi, \psi \text { amicable Sturmian morphisms }\} \tag{1}
\end{equation*}
$$

is a monoid, but it does not cover the whole monoid $\mathcal{M}_{3 \text { iet }}$.
We also study the incidence matrices of morphisms $\eta \in \mathcal{M}_{\text {ter }}$. From the definition of amicable Sturmian morphisms φ, ψ we can derive that φ and ψ have the same incidence matrix $\mathbf{A} \in \mathbb{N}^{2 \times 2}$, where $\operatorname{det} \mathbf{A}= \pm 1$. As shown in [13], for every matrix $\mathbf{A}=\left(\begin{array}{cc}p_{0} & q_{0} \\ p_{1} & q_{1}\end{array}\right)$ with $\operatorname{det} \mathbf{A}= \pm 1$, there exist $p_{0}+p_{1}+q_{0}+p_{1}-1$ Sturmian morphisms with incidence matrix \mathbf{A}. We will show the following theorem concerning the number of pairs of amicable Sturmian morphisms with a given matrix.

Theorem 1. Let $\mathbf{A}=\left(\begin{array}{cc}p_{0} & q_{0} \\ p_{1} & q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ be a matrix with $\operatorname{det} \mathbf{A}= \pm 1$. Then there exist exactly

$$
\begin{equation*}
m(\|\mathbf{A}\|-1)+\frac{m}{2}(\operatorname{det} \mathbf{A}-m) \tag{2}
\end{equation*}
$$

pairs of amicable Sturmian morphisms with incidence matrix \mathbf{A}, where $m=$ $\min \left\{p_{0}+p_{1}, q_{0}+q_{1}\right\}$ and $\|\mathbf{A}\|=p_{0}+p_{1}+q_{0}+q_{1}$.

Moreover, for such a given matrix \mathbf{A}, we will describe all matrices $\mathbf{B} \in$ $\mathbb{N}^{3 \times 3}$ such that \mathbf{B} is an incidence matrix of $\eta=\operatorname{ter}(\varphi, \psi)$ for amicable Sturmian morphisms φ, ψ with incidence matrix \mathbf{A}.

2 Preliminaries

Interval exchange. We consider Sturmian words, i.e., aperiodic infinite words given by exchange of 2 intervals with permutation $(2,1)$, and words given by exchange of 3 intervals with permutation (3,2,1). Let us recall that general r-interval exchange transformations were introduced already in [10]. The 2-interval exchange transformation $S:[0,1) \rightarrow[0,1)$ is determined by its slope $\varepsilon \in(0,1)$ and is given by

$$
S x= \begin{cases}x+1-\varepsilon & \text { if } x \in[0, \varepsilon) \\ x-\varepsilon & \text { if } x \in[\varepsilon, 1)\end{cases}
$$

The orbit of a point $x_{0} \in[0,1)$ with respect to the transformation S, i.e., the sequence $x_{0}, S x_{0}, S^{2} x_{0}, \ldots$ can be coded by an infinite word $u=\left(u_{i}\right)_{i=0}^{\infty}$ over the binary alphabet $\{0,1\}$. The infinite word is given by

$$
u_{i}= \begin{cases}0 & \text { if } S^{i} x \in[0, \varepsilon) \\ 1 & \text { if } S^{i} x \in[\varepsilon, 1)\end{cases}
$$

It is a well-known fact that for an irrational ε, the word u is Sturmian. Using the same construction on the partition of the interval $(0,1]$ into $(0, \varepsilon] \cup(\varepsilon, 1]$, we again obtain a Sturmian word. On the other hand, every Sturmian word
can be obtained by one of the above two constructions. The set of Sturmian words will be denoted by $\mathcal{W}_{\text {Sturm }}$.

The 3-interval exchange transformation T is determined by two parameters $\alpha, \beta \in(0,1)$ satisfying $\alpha+\beta<1$. Using parameters α, β and $\gamma=1-\alpha-\beta$ we partition the interval $[0,1)$ into $I_{A}=[0, \alpha), I_{B}=[\alpha, \alpha+\beta)$ and $I_{C}=[\alpha+\beta, 1)$. The mapping T is given by

$$
T x= \begin{cases}x+\beta+\gamma & \text { if } x \in I_{A} \\ x-\alpha+\gamma & \text { if } x \in I_{B} \\ x-\alpha-\beta & \text { if } x \in I_{C}\end{cases}
$$

The orbit of a point $x_{0} \in[0,1)$ with respect to the transformation T is coded by a word $u=\left(u_{i}\right)_{i=0}^{\infty}$ over the ternary alphabet $\{A, B, C\}$:

$$
u_{i}=X \quad \text { if } \quad T^{i} x_{0} \in I_{X}
$$

Similarly to the case of 2-interval exchange transformation, we can define the exchange of 3 intervals using the partition $(0,1]=(0, \alpha] \cup(\alpha, \alpha+\beta] \cup(\alpha+\beta, 1]$. If $\frac{1-\alpha}{1+\beta}$ is irrational, the infinite word u is aperiodic, and we call it a 3iet word; the set of these words is denoted by $\mathcal{W}_{3 i e t}$. For combinatorial properties of 3iet words, see [8].

Words over a finite alphabet. Besides the infinite words, we consider finite words over the alphabet \mathcal{A}. We write $w=w_{0} w_{1} \cdots w_{n-1}$, where $w_{i} \in \mathcal{A}$ for all $i \in \mathbb{N}, i<n$. We denote by $|w|$ the length n of the finite word w. We denote by $|w|_{a}$ the number of occurrences of a letter $a \in \mathcal{A}$ in the word w. The set of all finite words over the alphabet \mathcal{A} including the empty word ϵ is denoted by \mathcal{A}^{*}. The set \mathcal{A}^{*} with the operation of concatenation is a monoid. On the set \mathcal{A}^{*} we define a relation of conjugation: $w \sim w^{\prime}$, if there exists $v \in \mathcal{A}^{*}$ such that $w v=v w^{\prime}$. A morphism from \mathcal{A}^{*} to \mathcal{B}^{*} is a mapping $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ such that $\varphi(v w)=\varphi(v) \varphi(w)$ for all $v, w \in \mathcal{A}^{*}$. It is clear that a morphism is well defined by images of letters $\varphi(a)$ for all $a \in \mathcal{A}$. If $\mathcal{A}=\mathcal{B}$, then φ is called a morphism over \mathcal{A}.

The set of infinite words over the alphabet \mathcal{A} is denoted by $\mathcal{A}^{\mathbb{N}}$. The action of a morphism can be naturally extended to an infinite word $\left(u_{i}\right)_{i \in \mathbb{N}}$ putting $\varphi(u)=\varphi\left(u_{0}\right) \varphi\left(u_{1}\right) \varphi\left(u_{2}\right) \cdots$. If an infinite word $u \in \mathcal{A}^{\mathbb{N}}$ satisfies $\varphi(u)=u$, we call it a fixed point of the morphism φ over \mathcal{A}.

To a morphism φ over \mathcal{A} we assign an incidence matrix \mathbf{M}_{φ} defined by $\left(\mathbf{M}_{\varphi}\right)_{a b}=|\varphi(a)|_{b}$ for all $a, b \in \mathcal{A}$.

The language of an infinite word u is the set of all its factors. Let us recall that a finite word $w \in \mathcal{A}^{*}$ is a factor of $u=\left(u_{i}\right)_{i \in \mathbb{N}}$, if there exist indices $n, j \in \mathbb{N}$ such that $w=u_{n} u_{n+1} \cdots u_{n+j-1}$. The language of an infinite word is denoted by $\mathcal{L}(u)$.

It is known that the language of neither Sturmian nor 3iet word depends on the point $x_{0} \in[0,1)$, the orbit of which the infinite word codes. It depends only on slope ε or parameters α, β.

The (factor) complexity of an infinite word u is a mapping $\mathcal{C}_{u}: \mathbb{N} \rightarrow \mathbb{N}$, which returns the number of factors of u of the length n, thus $\mathcal{C}_{u}(n)=$ $\#\{w \in \mathcal{L}(u)||w|=n\}$. It is shown [12] that any aperiodic word u satisfies $\mathcal{C}_{u}(n) \geq n+1$ for all $n \in \mathbb{N}$. Aperiodic words with minimal complexity, i.e., $\mathcal{C}_{u}(n)=n+1$, are exactly the Sturmian words. Aperiodic words coding 3-interval exchange transformations, called here 3iet words, have the complexity $\mathcal{C}_{u}(n) \leq 2 n+1$ for all $n \in \mathbb{N}$. If a 3iet word $u \in \mathcal{W}_{3 \text { iet }}$ satisfies $\mathcal{C}_{u}(n)=2 n+1$ for all $n \in \mathbb{N}$, we call it a non-degenerate 3 iet word; otherwise we call it a degenerate 3iet word and it is a quasi-Sturmian word (see [7]).

Amicable words and morphisms. In the article [4], authors show the close connection between 3iet and Sturmian words using two morphisms $\sigma_{01}, \sigma_{10}:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ given by

$$
\begin{array}{ll}
\sigma_{01}(A)=0, & \sigma_{10}(A)=0 \\
\sigma_{01}(B)=01, & \sigma_{10}(B)=10 \\
\sigma_{01}(C)=1, & \sigma_{10}(C)=1
\end{array}
$$

In [4], the following theorem is proved.
Theorem 2. An infinite ternary word $u \in\{A, B, C\}^{\mathbb{N}}$ is a 3iet word if and only if the words $\sigma_{01}(u)$ and $\sigma_{10}(u)$ are Sturmian.

This theorem motivated the authors of [1] to introduce the relation of amicability of words.

Definition 3. Let $w, w^{\prime} \in\{0,1\}^{*}$, let $b \in \mathbb{N}$. We say that w is b-amicable to w^{\prime}, if there exists a factor $v \in\{A, B, C\}^{*}$ of some 3iet word such that

$$
w=\sigma_{01}(v), \quad w^{\prime}=\sigma_{10}(v) \quad \text { and } \quad|v|_{B}=b
$$

We say that w is amicable to w^{\prime}, if w is b-amicable to w^{\prime} for some $b \in \mathbb{N}$, and we denote it by $w \propto w^{\prime}$.

The ternary word v is called a ternarization of w and w^{\prime}, and we write $v=\operatorname{ter}\left(w, w^{\prime}\right)$.

It is easy to see that if $w \propto w^{\prime}$, then they are factors of the same Sturmian word and the numbers of occurrences of 0 's and 1 's in w and w^{\prime} coincide.

In [1], the notion of "amicable words" plays a crucial role in enumeration of words with length n occurring in a 3 iet word. In [2], the authors investigate ternary morphisms that have a non-degenerate 3iet fixed point using the following notion of amicability of two Sturmian morphisms.

Definition 4. Let φ, ψ be Sturmian morphisms over the alphabet $\{0,1\}$. We say that φ is amicable to ψ, if

$$
\begin{aligned}
\varphi(0) & \propto \psi(0), \\
\varphi(01) & \propto \psi(10) \\
\text { and } \quad \varphi(1) & \propto \psi(1) .
\end{aligned}
$$

We denote this relation by $\varphi \propto \psi$. The morphism η over the ternary alphabet $\{A, B, C\}$, given by

$$
\begin{aligned}
& \eta(A)=\operatorname{ter}(\varphi(0), \psi(0)) \\
& \eta(B)=\operatorname{ter}(\varphi(01), \psi(10)) \\
& \eta(C)=\operatorname{ter}(\varphi(1), \psi(1))
\end{aligned}
$$

is called the ternarization of morphisms φ and ψ, and is denoted by $\eta=$ $\operatorname{ter}(\varphi, \psi)$. Set of these η is denoted by $\mathcal{M}_{\text {ter }}$.

The article [2] states the following theorem:
Theorem 5. Let η be a ternary morphism with non-degenerate 3iet fixed point. Then $\eta \in \mathcal{M}_{\text {ter }}$ or $\eta^{2} \in \mathcal{M}_{\text {ter }}$.

3 Main results

Analogously to the terminology introduced for Sturmian words and morphisms in [6], the ternarization η, having a 3iet fixed point, is locally 3ietpreserving, i.e. there exists $u \in \mathcal{W}_{3 \text { iet }}$ such that $\eta(u) \in \mathcal{W}_{3 \text { iet }}$. We now prove a partial result about (globally) 3iet-preserving morphisms, i.e., ternary morphisms η such that

$$
\eta(u) \in \mathcal{W}_{3 \text { iet }} \quad \text { for all } \quad u \in \mathcal{W}_{3 \text { iet }}
$$

Proposition 6. Let $\eta=\operatorname{ter}(\varphi, \psi)$ for amicable Sturmian morphisms $\varphi \propto \psi$. Then η is a globally 3iet-preserving morphism.
Proof. Directly from definitions we see that

$$
\begin{array}{lll}
\sigma_{01} \eta(A)=\varphi(0), & \sigma_{01} \eta(B)=\varphi(01), & \sigma_{01} \eta(C)=\varphi(1) \\
\sigma_{10} \eta(A)=\psi(0), & \sigma_{10} \eta(B)=\psi(10), & \sigma_{10} \eta(C)=\psi(1)
\end{array}
$$

Therefore

$$
\begin{equation*}
\sigma_{01} \eta(v)=\varphi \sigma_{01}(v) \quad \text { and } \quad \sigma_{10} \eta(v)=\psi \sigma_{10}(v) \tag{3}
\end{equation*}
$$

for any factor v of a 3iet word $u \in \mathcal{W}_{3 i e t}$. According to Theorem 2 we get that $\sigma_{01}(u)$ and $\sigma_{10}(u)$ are Sturmian words, and since φ and ψ are Sturmian morphisms, we obtain that $\sigma_{01} \eta(u)$ and $\sigma_{10} \eta(u)$ are Sturmian words as well.

Proposition 7. Let $\varphi_{i} \propto \psi_{i}$ be Sturmian morphisms, for $i=1,2$. Then

$$
\operatorname{ter}\left(\varphi_{1}, \psi_{1}\right) \circ \operatorname{ter}\left(\varphi_{2}, \psi_{2}\right)=\operatorname{ter}\left(\varphi_{1} \circ \varphi_{2}, \psi_{1} \circ \psi_{2}\right) .
$$

Proof. It can be shown that the relation of amicability is preserved by composition of morphisms. More precisely $\varphi_{1} \varphi_{2} \propto \psi_{1} \psi_{2}$. Denote $\eta_{1}=\operatorname{ter}\left(\varphi_{1}, \psi_{1}\right)$, $\eta_{2}=\operatorname{ter}\left(\varphi_{2}, \psi_{2}\right)$. Using the relation (3), we see that for all $v \in\{A, B, C\}^{*}$

$$
\begin{aligned}
& \sigma_{01} \eta_{1} \eta_{2}(v)
\end{aligned}=\varphi_{1} \sigma_{01} \eta_{2}(v)=\varphi_{1} \varphi_{2} \sigma_{01}(v) . ~ 子 .
$$

But this means that $\eta_{1} \eta_{2}=\operatorname{ter}\left(\varphi_{1} \varphi_{2}, \psi_{1} \psi_{2}\right)$.
As a consequence of previous two propositions, we can state the following theorem.

Theorem 8. The set $\mathcal{M}_{\text {ter }}$ of all ternarizations of amicable Sturmian morphisms with the operation of composition of morphisms is a sub-monoid of the monoid $\mathcal{M}_{3 i e t}$ of all globally 3iet-preserving morphisms.

Unfortunately, $\mathcal{M}_{\text {ter }} \varsubsetneqq \mathcal{M}_{3 \text { iet }}$. Consider for example the morphism

$$
\eta(A)=B, \quad \eta(B)=C A C, \quad \eta(C)=C .
$$

As shown in [9], this morphism is 3iet-preserving, but it can be easily verified that it is not a ternarization of any pair of Sturmian morphisms. Another even simpler example is the morphism interchanging the letters A and C, which is clearly 3iet-preserving.

Now, our goal is to determine the number of amicable pairs of morphisms with incidence matrix \mathbf{A} of $\operatorname{det} \mathbf{A}= \pm 1$. We use the notion of b-amicable morphisms.

Definition 9. Let φ and ψ be binary morphisms and let $b \in \mathbb{N}$. We say that φ is b-amicable to ψ, if φ is amicable to ψ and the number of occurrences of B in $\operatorname{ter}(\varphi(01), \psi(10))$ is b.

Proposition 10. Let $\mathbf{A}=\left(\begin{array}{c}p_{0} q_{0} \\ p_{1} \\ q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ be a matrix with $\operatorname{det} \mathbf{A}= \pm 1$ and $b \in \mathbb{N}$. Put $p=p_{0}+p_{1}, q=q_{0}+q_{1}$. Then the number $c_{\mathbf{A}}(b)$ of pairs of b-amicable morphisms with matrix \mathbf{A} is equal to

$$
c_{\mathbf{A}}(b)= \begin{cases}\|\mathbf{A}\|-b & \text { if } \operatorname{det} \mathbf{A}=+1 \text { and } 1 \leq b \leq \min \{p, q\}, \\ \|\mathbf{A}\|-b-2 & \text { if } \operatorname{det} \mathbf{A}=-1 \text { and } 0 \leq b \leq \min \{p, q\}-1, \\ 0 & \text { otherwise. }{ }^{1}\end{cases}
$$

[^0]Sketch of the proof. Denote $N=\|\mathbf{A}\|$. Let us consider a Sturmian morphism φ with incidence matrix \mathbf{A}, and let $v=\varphi(01)$. Then $|v|=N$ and $|v|_{0}=$ p. The word v is a factor of some Sturmian word, nevertheless v codes a 2-interval exchange transformation S with rational slope $\varepsilon=p / N$. All conjugates to v - there are N such words including v itself - arise from the same transformation coding the sequence

$$
\begin{equation*}
x_{0}, S x_{0}, S^{2} x_{0}, \ldots, S^{N-1} x_{0} \quad \text { for } x_{0}=\frac{0}{N}, \frac{1}{N}, \ldots, \frac{N-1}{N} . \tag{4}
\end{equation*}
$$

Consider now a matrix \mathbf{A} with $\operatorname{det} \mathbf{A}=+1$. For every such matrix, there exist $N-1$ Sturmian morphisms $\varphi_{1}, \ldots, \varphi_{N-1}$. One of these morphisms, the so-called standard morphism $\varphi_{\text {std }}$, satisfies that there exists $w \in\{0,1\}^{*}$ such that $\varphi_{\text {std }}(01)=w 01$ and $\varphi_{\text {std }}(10)=w 10$, which means that $\varphi_{\text {std }}$ is 1 -amicable to itself (for details, see [13]).

For all morphisms $\varphi_{i}, 1 \leq i \leq N-1$, the word $\varphi_{i}(01)$ is conjugate to $\varphi_{\text {std }}(01)$. From this, it can be shown that each of these morphisms is 1 amicable to itself. Each of these words $\varphi_{i}(01)$ codes a sequence (4) with $x_{0}=k_{i} / N$ where $0 \leq k_{i} \leq N-2$. Using similar tricks as in [1] we can prove that $\varphi_{i}(01)$ is b-amicable to $\varphi_{j}(10)$ if and only if $0 \leq k_{j}-k_{i}=b-1 \leq$ $\min \{p, q\}-1$.

Combining all these facts the theorem can be proven for $\operatorname{det} \mathbf{A}=+1$. The proof for $\operatorname{det} \mathbf{A}=-1$ would be done in a very similar way.

Proof of Theorem 1. The formula (2) can be obtained by summation of numbers $c_{\mathbf{A}}(b)$ from the previous proposition.

To each pair of amicable Sturmian morphisms, an incidence matrix of its ternarization is assigned. We now fully describe which matrices from $\mathbb{N}^{3 \times 3}$ are matrices of ternarizations.

Theorem 11. A matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ is the incidence matrix of the ternarization of a pair of amicable Sturmian morphisms if and only if there exist matrix $\mathbf{A}=\left(\begin{array}{cc}p_{0} \\ p_{1} & q_{0} \\ q_{1}\end{array}\right) \in \mathbb{N}^{2 \times 2}$ with $\operatorname{det} \mathbf{A}=\Delta= \pm 1$ and numbers $b_{0}, b_{1} \in \mathbb{N}$ such that
(a) $\left|\frac{b_{0}\left(p_{1}+q_{1}\right)-b_{1}\left(p_{0}+q_{0}\right)}{p_{0}+q_{0}+p_{1}+q_{1}}\right|<1$,
(b) $\frac{1-\Delta}{2} \leq b_{0}+b_{1} \leq \min \left\{p_{0}+p_{1}, q_{0}+q_{1}\right\}-\frac{\Delta+1}{2}$,
(c)
$\mathbf{B}=\mathbf{P}\left(\begin{array}{cc}\mathbf{A} & b_{0} \\ 0 & b_{1} \\ 0\end{array}\right) \mathbf{P}^{-1}$, where $\mathbf{P}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right)$.

Sketch of the proof. Let us denote $p=p_{0}+p_{1}, q=q_{0}+q_{1}, N=p+q$ and $b=b_{0}+b_{1}+\Delta$. Then we can see that condition (c) gives

$$
\mathbf{B}=\left(\begin{array}{ccc}
p_{0}-b_{0} & b_{0} & q_{0}-b_{0} \tag{5}\\
p-b & b & q-b \\
p_{1}-b_{1} & b_{1} & q_{1}-b_{1}
\end{array}\right) .
$$

We will sketch the proof for $\Delta=+1$ as the other case is very similar. Let us start with the implication \Rightarrow.

The fact that (c) is necessary for \mathbf{B} to be an incidence matrix of a ternarization is shown in [3]. Condition (b) is necessary according to Proposition 10 , so we only need to show that (a) is satisfied for the matrix of the ternarization $\eta=\operatorname{ter}(\varphi, \psi)$ of a pair of amicable Sturmian morphisms $\varphi \propto \psi$.

We can see that $\mathbf{A}=\left(\begin{array}{c}p_{0} \\ p_{1} \\ q_{0}\end{array}\right)$ is necessarily an incidence matrix of both φ and ψ. Let S be a 2 -interval exchange transformation with rational slope $\varepsilon=p / N$. Then there exist $k, \bar{k} \in\{0, \ldots, N-2\}$ such that $\varphi(01), \psi(01)$ code transformation S with start points $x_{0}=k / N, \bar{x}_{0}=\bar{k} / N$; moreover, $\bar{k}-k=$ $b-1=b-\Delta$. We need to determine the value of $b_{0}=|\operatorname{ter}(\varphi(0), \psi(0))|_{B}$. The number b_{0} is equal to the number of indices $i \in\left\{0,1, \ldots, p_{0}+q_{0}-1\right\}$ such that $S^{i} x_{0} \in[(p-b+1) / N, p / N)$.

Denote by $\{x\}=x-\lfloor x\rfloor$ the fractional part of $x \in \mathbb{R}$. Then we have $S^{i} x_{0}=\left\{x_{0}-i p / N\right\}$. Denoting $X=\left\{\left\{x_{0}-i p / N\right\} \mid i \in \mathbb{N}, 0 \leq i<p_{0}+q_{0}\right\}$, we can show that

$$
b_{0}=\#\left(X \cap\left[\frac{p-b+1}{N}, \frac{p}{N}\right)\right) \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\},
$$

where $\beta=\frac{p_{0}+q_{0}}{N}(b-1)$. This means that

$$
\begin{equation*}
\left|\beta-b_{0}\right|<1 \tag{6}
\end{equation*}
$$

which implies condition (a).
Let us now sketch the proof of the other implication \Leftarrow. From [3], the incidence matrix of the ternarization ter (φ, ψ) is fully described by the matrix \mathbf{A} and numbers b_{0} and $b=b_{0}+b_{1}+\Delta$. Let us fix a matrix \mathbf{A} and $1 \leq b \leq$ $\min \{p, q\}-1$. The condition (a) is equivalent to (6) and it gives at most two values of b_{0}. If $\beta \in \mathbb{N}$, there is nothing to do as we have at least one pair of b-amicable morphisms $\varphi \propto \psi$ for \mathbf{A}, and its incidence matrix satisfies all three conditions.

For $\beta \notin \mathbb{N}$, we want to show that for both $b_{0} \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\}$ there exists $\varphi \propto$ ψ with $b_{0}=|\operatorname{ter}(\varphi(0), \psi(0))|_{B}$. The demonstration needs several statements; their proofs are too technical to be included in this extended abstract.

1. Let $X_{k}=\left\{\{k / N\}, S\{k / N\}, S^{2}\{k / N\}, \ldots, S^{p_{0}+q_{0}-1}\{k / N\}\right\}$ for any $k \in \mathbb{Z}$ and let $I=\left[\frac{p-b+1}{N}, \frac{p}{N}\right)$ be an interval. For both $b_{0} \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\}$, there exist $k_{1}, k_{2} \in \mathbb{Z}$ such that

$$
\#\left(X_{k_{1}} \cap I\right)=\#\left(X_{k_{2}} \cap I\right)=b_{0} \quad \text { and } \quad k_{1} \not \equiv k_{2} \quad(\bmod N) .
$$

2. Define morphisms φ_{k} for $k \in \mathbb{Z}$ in the following way. The word $\varphi_{k}(0)$ codes $\{k / N\}, S\{k / N\}, \ldots, S^{p_{0}+q_{0}-1}\{k / N\}$ and the word $\varphi_{k}(1)$ codes $S^{p_{0}+q_{0}}\{k / N\}, \ldots, S^{N-1}\{k / N\}$. Let $k_{0} \in \mathbb{Z}$ such that $\#\left(X_{k_{0}} \cap I\right)=$ $\#\left(X_{k_{0}+p} \cap I\right)$. Then

$$
\varphi_{k_{0}} \propto \varphi_{k_{0}+b-1} \quad \text { or } \quad \varphi_{k_{0}+p} \propto \varphi_{k_{0}+p+b-1}
$$

3. It remains to show that for both $b_{0} \in\{\lfloor\beta\rfloor,\lceil\beta\rceil\}$, there exists k_{0} satisfying $\#\left(X_{k_{0}} \cap I\right)=\#\left(X_{k_{0}+p} \cap I\right)$.

4 Conclusions

Matrices of 3iet-preserving morphisms were studied in [3]. The authors give a necessary condition on $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ to be an incidence matrix of a 3ietpreserving morphism:

$$
\mathbf{B E B}^{\boldsymbol{\top}}= \pm \mathbf{E}, \quad \text { where } \quad \mathbf{E}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right) .
$$

However, this condition is not sufficient. In our contribution, we study 3ietpreserving morphisms $\eta=\operatorname{ter}(\varphi, \psi)$ arising from pairs of amicable Sturmian morphisms $\varphi \propto \psi$. Our Theorem 11 gives sufficient and necessary condition for any matrix $\mathbf{B} \in \mathbb{N}^{3 \times 3}$ to satisfy $\mathbf{B}=\mathbf{M}_{\eta}$ for some ternarization $\eta=$ $\operatorname{ter}(\varphi, \psi)$.

It remains to answer the question about the role of the monoid

$$
\mathcal{M}_{\mathrm{ter}}=\{\operatorname{ter}(\varphi, \psi) \mid \varphi, \psi \text { amicable morphisms }\}
$$

in the whole monoid $\mathcal{M}_{3 \text { iet }}$ of all 3iet-preserving morphisms.

Acknowledgements

We acknowledge financial support by the Czech Science Foundation grant 201/09/0584 and by the grants MSM6840770039 and LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic. We also thank the CTU student grant SGS10/085/OHK4/1T/14.

References

[1] P. Ambrož, A. Frid, Z. Masáková, and E. Pelantová, On the number of factors in codings of three interval exchange, Preprint 2009, arXiv:0904.2258v1.
[2] P. Ambrož, Z. Masáková, and E. Pelantová, Morphisms fixing words associated with exchange of three intervals, RAIRO Theor. Inform. Appl. 44 (2010), 3-17.
[3] P. Ambrož, Z. Masáková, and E. Pelantová, Matrices of 3-iet preserving morphisms, Theoret. Comput. Sci. 400 (2008), no. 1-3, 113-136.
[4] P. Arnoux, V. Berthé, Z. Masáková, and E. Pelantová, Sturm numbers and substitution invariance of 3iet words, Integers 8 (2008), A14, 17.
[5] J. Berstel, Recent results in Sturmian words, Developments in language theory, II (Magdeburg, 1995), World Sci. Publ., River Edge, NJ, 1996, pp. 13-24.
[6] J. Berstel and P. Séébold, Morphismes de sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189.
[7] J. Cassaigne, Sequences with grouped factors, Developments in language theory III, Aristotle University of Thessaloniki, Greece, 1998, pp. 211222.
[8] S. Ferenczi, C. Holton, and L. Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories, J. Anal. Math. 89 (2003), 239-276.
[9] L. Háková, Morphisms on generalized sturmian words, Master's thesis, Czech Technical University in Prague, 2008.
[10] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 81-106.
[11] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002.
[12] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42.
[13] P. Séébold, On the conjugation of standard morphisms, Theoret. Comput. Sci. 195 (1998), no. 1, 91-109.

[^0]: ${ }^{1}$ Let us recall that $\left\|\left\lvert\, \begin{array}{cc}p_{0} & q_{0} \\ q_{1}\end{array}\right.\right\|=p_{0}+q_{0}+p_{1}+q_{1}$.

