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Abstrakt:
Sturmovská slova a morfismy přitahují pozornost matematiků, protože je lze
ekvivalentně definovat mnoha způsoby. Jedna z definic je založena na výměně
dvou intervalů, slova potom nazýváme 2iet slova. Podobně lze pomocí výměny
tří intervalů definovat 3iet slova. Při popisu morfismů, které mají 3iet slova za
svoje pevné body, byla zjištěna úzká souvislost těchto morfismů s páry spřáte-
lených sturmovských morfismů. Hlavním výsledkem práce je určení počtu párů
spřátelených sutrmovských morfismů, které mají stejnou incidenční matici.
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Abstract:
Sturmian words and morphisms grab attention of mathematicians because of
their numerous equivalent definitions. One of the definitions is based on two
interval exchange transformation; words are then called 2iet words. Similarly 3iet
words can be defined using three interval exchange transformation. There is a
close connection between these morphisms and pairs of amicable sturmian mor-
phisms. The main result is that we found number of pairs of amicable sturmian
morphisms with the same incidence matrix.
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Chapter 1

Introduction

The objective of this thesis is to expand knowledge on the pairs of ami-
cable sturmian morphisms. The article [1] shows close connection between
these morphisms and 3iet preserving morphisms, specifically by the following
theorem.

Theorem. Let η be a primitive substitution fixing a non-degenerate 3iet word
u. Then there exist Sturmian morphisms ϕ and ψ having fixed points, such
that ϕ ∝ ψ and η or η2 is equal to ter(ϕ,ψ).

In chapter two, the basic notions are defined, particularly words and mor-
phisms, and summary of their most important properties is done. Chapter
three summarizes definitions and properties of sturmian words and mor-
phisms. Definition and properties of the relation of amicability are written
in chapter four.

The new results on number of amicable sturmian morphisms are in chap-
ter five.

The properties of non-negative integer 2 × 2 matrices with determinant
equal to +1, which are widely used in the thesis, are recalled in the appendix.
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Chapter 2

Words and Morphisms

2.1 Words on finite alphabets
At first, we need to define basic notions, alphabet, letter, word, etc.

Definition 2.1. (1) An alphabet (usually denoted A) is any finite set,
elements of A are called letters.

In our thesis, the alphabet will usually be the set {0, 1} or the set
{0, 1, 2}.

(2) Let n ∈ N. The mapping w : n̂→ A is a finite word over A. Number
n is called the length of finite word w, denoted |w|.

(3) u : N→ A is an infinite word over A. We put length of infinite word
as |u| := +∞.

(4) Value of the word u (as a mapping) at non-negative integer i is denoted
as ui.

(5) A∗ is set of all finite words over A.

(6) AN is set of all infinite words over A.

(7) Let n ∈ N. We denote An the set of all words on A of length n,
An :=

{
u ∈ A∗

∣∣|u| = n
}
.

(8) A+ := A∗ r {ε} is set of all non-empty finite words.

(9) A∞ := A∗ ∪ AN is set of all finite and infinite words.

On words, we define the concatenation, in a natural way.

Definition 2.2. Let u ∈ A∗ be a finite word, and v ∈ A∞ a finite or infinite
word. The concatenation of words u and v (denoted u ·v or uv) is a word
of length |u|+ |v| defined as follows:

(u · v)i :=

{
ui if 0 ≤ i < |u|
vi−|u| if |u| ≤ i < |u|+ |v|
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For any sets of words X ⊆ A∗ and Y ⊆ A∞ we write

X · Y := {xy|x ∈X,y ∈ Y } .

Example. Words on the alphabet {0, 1} are for instance 01001 or 010. Holds
that 01001 · 010 = 01001010.

Definition 2.3. Let u ∈ A∗, k ∈ N. We define the k-th power of word u

recurrently:

(1) u0 := ε;

(2) uk := uuk−1 for any k ≥ 1.

For u 6= ε we define infinite power uω ∈ AN as (uω)i := ui−|u|bi/|u|c

Definition 2.4. Let u ∈ A∞, v ∈ A∗. We say that v is factor of u, if there
exist s ∈ A∗ and t ∈ A∞ such that u = svt.

Set of all factors of u is denoted by Fact(u).
Additionally, if s = ε then v is called prefix of u; and if t = ε then v is

called suffix of u.
Let n ∈ N. Set of all factors of word u of length n is denoted by Factn(u).

Example. Fact(01001) = {ε, 0, 1, 00, 01, 10, 001, 010, 100, 0100, 1001}.

Definition 2.5. Let u be a word on any given alphabet. For every a in the
alphabet we define number of occurrences of letter a in u as

|u|a := #
{
i ∈ |̂u|∣∣ui = a

}
.

Example. |01001|0 = 3 and |01001|1 = 2.

For purpose of defining morphisms on infinite words, we need a metric on
the set A∞ of finite and infinite words. To do so, we will formally represent,
by adding a new symbol • to the alphabet, a finite word w ∈ A∗ as an
infinite word w•ω. Using this convention, we define:

Definition 2.6. For any u,v ∈ A∞, put

µ(u,v) := min {i ∈ N|ui 6= vi}

and

d(u,v) :=
1

1 + µ(u,v)
. (2.1)

The mapping d : A∞ × A∞ → [0, 1] is called metric on A∞.
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Remark. (1) The value µ(u,v) is the first index, where u differs from v.

(2) If u = v, then the set {i ∈ N|ui 6= vi} is empty and we have µ(u,u) =
min ∅ = +∞.

The following proposition shows that the name “metric” for mapping d
is justified.

Lemma 2.7. Let u,v,w ∈ A∞. Then

µ(u,w) ≥ min{µ(u,v), µ(v,w)}.

Proof. Let k := µ(u,w). Then uk 6= wk, and thus either vk 6= uk or
vk 6= wk. Hence min{µ(u,v), µ(v,w)} ≤ k.

Proposition 2.8. The mapping d defined by (2.1) is a metric on A∞.

Proof. (1) For u 6= v we have µ(u,v) < +∞, hence d(u,v) > 0. The
equality d(u,u) = 0 applies by definition.

(2) The function µ is symmetric hence the function d is symmetric.

(3) The function d is decreasing function of µ, which with previous lemma
gives d(u,w) ≤ max{d(u,v), d(v,w)} ≤ d(u,v) + d(v,w).

Property 2.9. AN with the metric d is a compact space.

Proof. For contradiction, suppose that AN with d is not compact. That
means that there exists an open cover S of AN which does not have finite
subcover. Hence as

{
aAN

∣∣a ∈ A}
is a partition1 of AN, one of its members

does not have finite subcover. Let us denote this one M0 = w0AN. Surely
d(M0) = 1

2 .
We know that

{
w0aAN

∣∣a ∈ A}
is a partition of M0, hence exists letter

w1 such that M1 := w0w1AN does not have finite subcover and holds that
d(M1) = 1

3 . This way we can construct infinite word w = w0w1w2 . . .

which belongs to Mn for every n ∈ N. Denote N ∈ S set in the primary
cover S which owns w. As N is open, it owns some open ball B(w, r) and
Mn ⊆ B(w, r) for large enough n. This is in contradiction with the fact that
Mn does not have finite subcover of S.

Property 2.10. The set A∗ is an associative monoid with cancellation, i.e.:

(1) (∀u,v ∈ A∗)(uv ∈ A∗);
1i.e. AN =

S
a∈A

aAN
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(2) the empty word ε is a neutral element of A∗: (∀u ∈ A∗)(u = uε = εu);

(3) (∀u,v,w ∈ A∗)((uv)w = u(vw)
)
;

(4) (∀u,v, s ∈ A∗)((us = vs ∨ su = sv) =⇒ u = v
)
.

Proof. Claims 1–3 are proven from definition of concatenation.
Let us prove 4, by contradiction, and let us do the proof just for the

case us = vs, as the second case is very similar. First, if |u| 6= |v|, we
get |us| 6= |vs|, which is in contradiction with equality of us and vs as
maps (they have different length, i.e. different domain). So |u| = |v|, but(∃i ∈ |̂u|)(ui 6= vi). Hence (us)i 6= (vs)i, contradiction.

2.2 Morphisms on words
Definition 2.11. Let ϕ be a mapping ϕ : A∞ → A∞. We say that ϕ is a
morphism over alphabet A when ϕ satisfies:

(1) (∀a ∈ A)(ϕ(a) 6= ε);

(2) (∀u ∈ A∗)(∀v ∈ A∞)(ϕ(uv) = ϕ(u)ϕ(v)).

Remark. (1) The set A∞ is not a monoid, hence ϕ is not a morphism in
algebra. However, as A∗ is a monoid, ϕ restricted to A∗ is a morphism
ϕ : A∗ → A∗. And as will be shown below, ϕ : A∞ → A∞ is a
continuous expansion of ϕ : A∗ → A∗.

(2) In the language of algebra, the mapping ϕ would be a morphism, even
if ϕ(a) = ε for some letter a ∈ A. Some literature call morphisms
in our definition as non-erasing. But as we do not work with erasing
morphisms, we will not specify this.

Property 2.12. Any morphism over A is continuous.

Proof. We will show that d(ϕ(u), ϕ(v)) ≤ d(u,v). If u = v, the claim
holds. Let u 6= v. First, from definition of morphism we have that |ϕ(a)| ≥
1. Mathematical induction by the length |x| gives |ϕ(x)| ≥ |x|. Now let
µ(u,v) = k, hence exists s ∈ Ak such that u = su′ and v = sv′. Then
µ(ϕ(u), ϕ(v)) ≥ |ϕ(s)| ≥ |s| = µ(u,v) and as d is descending function of µ,
holds that d(ϕ(u), ϕ(v)) ≤ d(u,v).

Property 2.13. The morphism is well-defined by its value on single-letter
words, i.e.

(∀ϕ,ψ morphisms over A
)((∀a ∈ A)(

ϕ(a) = ψ(a)
)

=⇒ ϕ = ψ
)
.
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Proof. We need to show that if condition is true for two morphisms ϕ,ψ,
then for every word u ∈ A∞ holds ϕ(u) = ψ(u).

For finite u we show the claim by mathematical induction on n = |u|.

(n = 0) For every morphism holds that ϕ(ε) = ε.

(n→ n+ 1) Put u = wa, a ∈ A. Then

ϕ(u) = ϕ(wa) = ϕ(w)ϕ(a) = ψ(w)ψ(a) = ψ(u).

Let w be an infinite word and let u(n) be the prefix of the word w of
the length n. Then limn→∞ u(n) = w (limit in the sense of metric d). As
ϕ(u(n)) = ψ(u(n)) for all n ∈ N and the morphisms are continuous, we have
ϕ(w) = ψ(w).

According to this property, we can use the following convention.

Convention. The following notation is used to define morphism ϕ over the
alphabet A = {a0, . . . , ak−1}:

ϕ :

a0 7→ ϕ(a0)
a1 7→ ϕ(a1)
...

...
ak−1 7→ϕ(ak−1)

Definition 2.14. We define following important morphisms over alphabet
{0, 1}:

I :
0 7→ 0
1 7→ 1

; E :
0 7→ 1
1 7→ 0

; F :
0 7→ 01
1 7→ 0

; F̃ :
0 7→ 10
1 7→ 0

. (2.2)

Theorem 2.15. Let ϕ be a morphism over A. Then ϕ has a fixed point
starting with a ∈ A, if and only if, ϕ(a) starts with letter a.

Moreover, if |ϕ(a)| ≥ 2, the fixed point is unique (for given ϕ and a).

Proof. Let ϕ(a) = ax. The following two cases are discussed.

(x = ε) Then ϕ(a) = a and ϕ(aω) = aω. Hence u = aω is a fixed point of
ϕ.

(x 6= ε) Put u(0) := a as an one-letter word. Define sequence u(n) recur-
rently putting

u(n+1) := ϕ
(
u(n)

)
. (2.3)
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k f (k) := F (f (k−1))

0 1
1 0
2 01
3 010
4 01001
5 01001010
6 0100101001001
7 010010100100101001010
...

. . .

Table 2.1: Iteration of Fibonacci morphism F .

First, we show that u(n) is a prefix of u(n+1), by mathematical induc-
tion. Equalities u(0) = a and u(1) = ϕ(a) = ax give us the claim
for n = 0. Now let u(n) = u(n−1)y. Then u(n+1) = ϕ

(
u(n)

)
=

ϕ
(
u(n−1)y

)
= u(n)ϕ(y), giving the claim.

One-letter word a is a factor of u(n) for every n, and |ϕ(a)| > |a|,
hence

∣∣u(n+1)
∣∣ > ∣∣u(n)

∣∣. Along with the previous observation about
prefixes we get that sequence u(n) is convergent, and we can put u =
limn→+∞ u(n). Applying limit on the equation (2.3) gives that ϕ(u) =
u, proving the first part of theorem.

Moreover, it is clear that a fixed point must start with such letter a that
ϕ(a) starts by a. We have shown that for every such a there exists a fixed
point.

Finally we show the uniqueness of the fixed point for every a in the case
that |ϕ(a)| ≥ 2. Let aw be an infinite word such that ϕ(aw) = aw. Then
aw = ϕk(aw) = u(k)ϕk(w), which means that u(k) is a prefix of w for every
k, hence w = limk→+∞ u(k) = u.

Example. Let us take the morphism F defined by (2.2). We have that F (0)
is a 2-letter word and starts with 0. Moreover, F (1) does not start with 1,
which means, that F has exactly one fixed point f , so-called Fibonacci
word. Its construction is seen in Table 2.1. The beginning of this infinite
word looks as follows:

f = 0100101001001010010100100101001001 · · · (2.4)

For the examination of sturmian morphisms, we will widely use their
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matrices, whose determinant is equal to 1 or −1. We now define a matrix of
morphism and show the most important properties.

Definition 2.16. Let A be an alphabet, let us sort the letters in alphabet
A, put A = {a0, a1, . . . , ak−1}, where k = #A is the size of the alphabet.

(1) Let n ∈ N, n ≥ 1, and let u(0), . . . ,u(n−1) ∈ A∗ be n finite words over
A. We define matrix of words u(0), . . .u(n−1) of order k × n as

M
(
u(0), . . . ,u(n−1)

)
:=




∣∣u(0)
∣∣
a0

∣∣u(1)
∣∣
a0

. . .
∣∣u(n−1)

∣∣
a0∣∣u(0)

∣∣
a1

∣∣u(1)
∣∣
a1

. . .
∣∣u(n−1)

∣∣
a1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∣∣u(0)
∣∣
ak−1

∣∣u(1)
∣∣
ak−1

. . .
∣∣u(n−1)

∣∣
ak−1



.

Note that for n = 1, M
(
u(0)

)
is a column.

(2) Let ϕ be a morphism over A. We define matrix of morphism ϕ as

Mϕ := M (ϕ(a0), ϕ(a1), . . . , ϕ(ak−1))

=




|ϕ(a0)|a0
|ϕ(a1)|a0

. . . |ϕ(ak−1)|a0
|ϕ(a0)|a1

|ϕ(a1)|a1
|ϕ(ak−1)|a1

...
. . .

...
|ϕ(a0)|ak−1

|ϕ(a1)|ak−1
. . . |ϕ(ak−1)|ak−1



.

Example. Let us write the matrix of words and morphisms for alphabet
A = {0, 1} :

M
(
u(0), . . . ,u(n−1)

)
=

(∣∣u(0)
∣∣
0
· · · ∣∣u(n−1)

∣∣
0∣∣u(0)

∣∣
1
· · · ∣∣u(n−1)

∣∣
1

)
;

Mϕ = M (ϕ(0), ϕ(1)) =

(
|ϕ(0)|0 |ϕ(1)|0
|ϕ(0)|1 |ϕ(1)|1

)
.

Example. Matrices of morphisms defined by (2.2) are

MI =

(
1 0
0 1

)
; ME =

(
0 1
1 0

)
; MF = M eF =

(
1 1
1 0

)
.

Proposition 2.17. Let u ∈ A∗ be a finite word and let ϕ,ψ be morphisms
over A = {a0, a1, . . . , ak−1}. Then

(1) M (ϕ(u)) = Mϕ ·M (u);

(2) Mϕψ = MϕMψ.
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Proof. (1) For all i ∈ n̂ holds that

M (ϕ(u))i0 = |ϕ(u)|ai
=

k−1∑

j=0

|ϕ(aj)|ai
|u|aj

=
k−1∑

j=0

(Mϕ)ij M (u)j0

=
(
Mϕ ·M (u)

)
i0
.

(2) For all i, j ∈ n̂ holds that

(
Mϕψ

)
ij

= |ϕψ(aj)|ai
= M

(
ϕ(ψ(aj))

)
i0

=
(
Mϕ ·M (ψ(aj))

)
i0

=
(
MϕMψ ·M (aj)︸ ︷︷ ︸

c(j)

)
i0

= (MϕMψ)ij ,

where c(j) is a vector of the standard basis,
(
c(j)

)
i

=

{
1 if i = j

0 if i 6= j
.
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Chapter 3

Sturmian Words and Morphisms

Sturmian words can be defined in different equivalent ways. As we study two-
and three-interval exchange transformations, we will prefer the definition by
2iet words.

3.1 Interval exchange transformation
Interval exchange transformation can be defined very generally for any num-
ber of intervals and any permutation of the intervals. For purposes of this
thesis, just 2- and 3-interval exchange is needed.

Definition 3.1. Let α ∈ (0, 1) . We define 2-interval exchange transfor-
mation Tα : [0, 1) → [0, 1) by

Tα(ξ) :=

{
ξ + 1− α if ξ < α

ξ − α if ξ ≥ α
(the action of the mapping Tα is shown in Figures 3.1 and 3.2). Number α
is called the parameter (or slope) of the transformation Tα.

Definition 3.2. Let Tα be a 2-interval exchange transformation, let ρ ∈
[0, 1) , and let ` ∈ N ∪ {∞}. We define a word t of length ` on the alphabet
{0, 1} as follows:

ti :=

{
0 if T iα(ρ) < α

1 if T iα(ρ) ≥ α ,

and we write
t ∼ (T iα(ρ))`i=0. (3.1)

Infinite word t is called a 2iet word, finite word t is called a 2iet factor.
The number ρ is called the start point (or intercept) of the 2iet word

or factor.

The following proposition follows directly from the definition.

Proposition 3.3. Let Tα be a 2-interval exchange transformation, let ρ ∈
[0, 1) . Then

T kα(ρ) ≡ ρ− kα (mod 1).
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0 α 1

0 1− α 1

?
Tα

Figure 3.1: Two-interval exchange transformation Tα

•

◦•

◦

0 α 1 ξ
0

1− α

1

Tα(ξ)

Figure 3.2: Graph of two-interval exchange transformation Tα

0 α 1− β 1

0 β 1− α 1

?
Tα,β

Figure 3.3: Three-interval exchange transformation Tα,β

•

◦•

◦•

◦

0 α 1− β 1 ξ
0

β

1− α

1

Tα,β(ξ)

Figure 3.4: Graph of three-interval exchange transformation Tα,β
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k T kτ (1− τ) (tτ,1−τ )k

0 0.382 0
1 0.764 1
2 0.146 0
3 0.528 0
4 0.910 1
5 0.292 0
6 0.674 1
7 0.056 0
8 0.438 0
9 0.820 1
10 0.202 0
11 0.584 0

k T kτ (1− τ) (tτ,1−τ )k

12 0.966 1
13 0.348 0
14 0.729 1
15 0.111 0
16 0.493 0
17 0.875 1
18 0.257 0
19 0.639 1
20 0.021 0
21 0.403 0
22 0.785 1

...

Table 3.1: Example of 2iet word t ∼ (T iτ (1− τ))∞i=0.

Example. In Table 3.1, there is an example of 2-interval exchange trans-

formation and 2iet word for parameter α = τ :=
√

5− 1
2

≈ 0.618 and start
point ρ = 1 − τ ≈ 0.382. Number τ is often called the golden ratio and
t ∼ (T iτ (1− τ))∞i=0 is the Fibonacci word, see example after Theorem 2.15.

Definition 3.4. Let α, β ∈ (0, 1) be real numbers such that α+ β < 1. We
define 3-interval exchange transformation Tα,β : [0, 1) → [0, 1) as

Tα,β(ξ) :=





ξ + 1− α if ξ ∈ [0, α)
ξ + β − α if ξ ∈ [α, 1− β)
ξ + β − 1 if ξ ∈ [1− β, 1)

(the action of the mapping Tα,β is shown in Figures 3.3 and 3.4).

Definition 3.5. Let Tα,β be a 3-interval exchange transformation, and let
ρ ∈ [0, 1) . To transformation Tα,β and number ρ, we assign an infinite word
t as follows:

ti :=





0 if T iα,β(ρ) ∈ [0, α)
2 if T iα,β(ρ) ∈ [α, 1− β)
1 if T iα,β(ρ) ∈ [1− β, 1)

,

and we write
t ∼ (T iα,β(ρ))

∞
i=0. (3.2)

If the word t is aperiodic, we call it a 3iet word. Moreover, we call it
degenerate, if 1 ∈ (1− α)Z+ (1− β)Z, and non-degenerate otherwise.
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Remark. We ought to note that the definitions of 2iet and 3iet words are
a bit inconsistent, because we do allow periodic 2iet words, but we do not
allow periodic 3iet words. Reason for this is that aperiodic 2iet words are in
fact sturmian words, and we widely use periodic 2iet words in the following
text.

3.2 Language of two-interval exchange
transformation

Definition 3.6. Let N ∈ N be a natural number and let α ∈ [0, 1) . We
define the set of words LN (α) as follows:

LN (α) := FactN (t),

where t ∼ (T iα(0))∞i=0 is a 2iet word with parameter α.
The union of sets LN (α) for all N ∈ N is called a language of transfor-

mation Tα:
L(α) :=

⋃

N∈N
LN (α) = Fact(t).1

Definition 3.7. Let u,v ∈ {0, 1}∞ be two words of the same length. We
say that u is lexicographically smaller than v (denoted u ≺ v), if there
exist words w,x,y such that u = w0x and v = w1y. Similarly we define
relations Â, ¹ and º.

The following properties follow easily from the definition.

Property 3.8. Lexicographical order is an order, i.e.:

(1) (∀u ∈ {0, 1}∞)(u ¹ u) (reflexivity);

(2) (∀u,v,w ∈ {0, 1}∞)((u ¹ v ∧ v ¹ w) =⇒ u ¹ w) (transitivity);

(3) (∀u,v ∈ {0, 1}∞,u 6= v)(u ¹ v =⇒ v 6¹ u) (anti-symmetry).

The following proposition is very important for counting pairs of amicable
sturmian morphisms.

Proposition 3.9. Let p,N ∈ N be coprime natural numbers such that p ≤
N . For every ρ ∈ [0, 1) put tρ the 2iet factor of length N given by

tρ ∼ (T ip/N (ρ))N−1
i=0 .

Then the following holds.
1It can be easily shown [3] that the the language does not depend on the start point

ρ, but depends only on the parameter α, i.e. Fact(tα,ρ) = Fact(tα,ρ′).
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(1) Suppose j ∈ N̂ . Then for any ρ, ρ′ ∈
[
j
N ,

j+1
N

)
holds that tρ = tρ′.

(2) Let j ∈ N̂ . Then the mapping f : N̂ → {0, 1/N, . . . , (N − 1)/N} given
by

f(k) := T kp/N (j/N)

is injective.

(3) Suppose j, j′ ∈ N such that 0 ≤ j′ < j < N . Then

tj′/N ≺ tj/N .

(4) The number of elements of the set LN (p/N) is

#LN (p/N) = N.

Proof. Let us shorten T := Tp/N .

(1) We need to show that T k(ρ) < p/N , if and only if, T k(j/N) < p/N .
But T k(j/N) = i/N for some i ∈ N̂ and T k(ρ) = i/N + (ρ − j/N),
because ρ− j/N < 1/N and i/N < (N − 1)/N . That gives tρ = tj/N

for all ρ ∈
[
j
N ,

j+1
N

)

This means that we can represent all possible words in LN (p/N) by
words with ρ ∈ {0, 1/N, . . . , (N − 1)/N}.

(2) We will find the inverse mapping to f . Proposition 3.3 gives in this
case

N · T k(j/N) ≡ j − pk (mod N).

As p,N are coprime, there exists m ∈ N̂ such that

pm ≡ 1 (mod N).

From these two congruences, we get

k ≡ m(
j −N · T k(j/N)

)
(mod N)

This means that we found the inverse mapping

f−1(i/N) ≡ m(j − i) (mod N),

which proves the injectiveness.
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(3) Due to transitivity of relation (≺), it is enough to show the claim for
j′ = j − 1. According to the previous, there exist exactly one k0 and
k1 such that

T k0(j/N) = 0 and T k1(j/N) = p/N,

which means that

T k0(j′/N) = (N − 1)/N and T k1(j′/N) = (p− 1)/N.

We know that at all positions but k0 and k1, the words have same
letters. But we can see that either k0 = k1 + 1, which means that
tj′/N = x01y and tj/N = x10y, or k0 = 0 and k1 = N − 1, but this
would mean that j = 0 and j′ = N − 1, which we do not allow.

(4) We can see that LN (p/N) =
{

tρ

∣∣∣ρ ∈ [0, 1)
}
. The interval [0, 1) is

divided into N sub-intervals, we know that each of them is assigned
one word in LN (p/N), and due to strict lexicographical order of these
words, they are different for different intervals.

3.3 Sturmian words and their equivalent
definitions

There exist many equivalent definitions of sturmian words. We will define
sturmian words using the balance property.

Definition 3.10. Let u,v ∈ {0, 1}∗ be words of the same finite length. We
define δ (u,v) :=

∣∣|u|0 − |v|0
∣∣

Definition 3.11. Let U ⊆ {0, 1}∗ be a set of words. We say that the set U

is balanced, if
(∀x,y ∈ U , |x| = |y|)(δ (x,y) ≤ 1).

Let u ∈ {0, 1}∞ be a finite or infinite word. We say that u is balanced,
if the set Fact(u) is balanced.

Definition 3.12. Let u ∈ AN be an infinite word.

(1) We say that u is periodic, if there exist finite words v,w ∈ A∗ such
that u = vwω. Moreover, if u = wω, we say that u is strictly
periodic.

(2) We say that u is aperiodic, if u is not periodic.
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Definition 3.13. Let u ∈ {0, 1}N be an infinite word. We say that u is
sturmian, if u is balanced and aperiodic.

Definition 3.14. We define a complexity of words on alphabet {0, 1} as

C(u, n) := #Factn(u)

for all n ∈ N. That means that C(u, n) is number of factors of u of length
n.

The following theorem [3] allows us to describe the sturmian words by
their complexity.

Theorem 3.15. Let u ∈ {0, 1}N be an infinite word. Then u is sturmian, if
an only if,

(∀n ∈ N)(C(u, n) = n+ 1).

Definition 3.16. Let u ∈ {0, 1}∞ be a finite or infinite word and let x be
its factor. We say that x is right special factor of u, if and only if, both
x0 and x1 are factors of u.

Lemma 3.17. Let u ∈ {0, 1}N be an infinite word, n ∈ N. Then number of
right special factors of length n is equal to C(u, n+ 1)− C(u, n).

Proof. Let R be set of factors of length n that are right special and S set
of those that are not. For x ∈ R both x0 and x1 are factors of u, for x ∈ S
exactly one of x1 and x0 is factor of u. Hence C(u, n + 1) − C(u, n) =
(2 ·#R+ #S)− (#R+ #S) = #R.

Proposition 3.18. Let u ∈ {0, 1}N. Then u is sturmian, if and only if, it
contains exactly one right-special factor of each length.

Proof. (⇒) From Theorem 3.15 we have C(u, n+1)−C(u, n) = (n+2)−
(n+ 1) = 1.

(⇐) Equalities C(u, 0) = 1 and C(u, n + 1) − C(u, n) = 1 follows to
C(u, n) = n+ 1 for every n ∈ N.

The most important for us is characterization of sturmian words by 2-
interval exchange transformation.

Theorem 3.19. Let u ∈ {0, 1}N be an infinite word. Then u is sturmian, if
and only if, there exists α, ρ ∈ [0, 1) such that α is irrational and

u ∼ (T iα(ρ))∞i=0 or E(u) ∼ (T iα(ρ))∞i=0, (3.3)

where E is morphism E :
0 7→ 1
1 7→ 0

.
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Remark. If the first holds in (3.3), then the word u is sometimes called
lower mechanical. If the second holds, it is called upper mechanical.

Proposition 3.20. Let α ∈ [0, 1) . Then the set L(α) is balanced.
Moreover, suppose α rational, α = p/N . Then for each v ∈ LN (p/N)

the periodic infinite word vω is balanced.

Proof. If α is irrational, then L(α) = Fact(u) for some sturmian word u,
and hence the set is balanced.

To prove the second claim, we will firstly show that the set LN (p/N) is
balanced for every p,N . Let α be an irrational number very close to p/N ,
then FactN (vω) = LN (p/N) ⊆ LN (α) = FactN (u) for some sturmian word
u,2 so the set Factn(u) is balanced for every n ∈ N. But as FactN (vω) ⊆
FactN (u), we have Factn(vω) ⊆ Factn(u) for every n ≤ N hence the set
Factn(vω) is balanced.

The word vω is balanced if the set Factn(vω) is balanced for every n ∈ N.
Let n ∈ N, take any k ∈ N such that kN ≥ n. Then w := vk ∈ LkN (p/N) =
LkN (kp/kN) and vω = wω. Finally, the previous gives that Factn(wω) is a
balanced set, proving the claim.

3.4 Standard word tree
It will be proven that every sturmian morphism is conjugate to some standard
morphism. Definition of standard tree and standard morphisms is the topic
of this section. The construction of standard word tree is shown in Figure
3.5.

The root node is the pair (0, 1). The tree is binary, i.e. every node (u,v)
has 2 children. The left child node is (u,uv) and the right child node is
(vu,v).

From the construction of standard tree the following properties about
matrices of pairs are clear.

Property 3.21. (1) For the head node of the standard tree holds that

M (0, 1) = I.

(2) For every node (u,v) holds that

M (u,uv) = M (u,v) · L and M (vu,v) = M (u,v) ·R,
where

L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
.

2For each p, N there exists ε > 0 such that all α ∈ (p/N − ε, p/N + ε) satisfy this.



3.4. Standard word tree 26

(0, 1)I

(0, 01)L (10, 1)R

(0, 001)LL (010, 01)LR (10, 101)RL (110, 1)RR

(010, 01001)LRL

(010, 01001001)LRLR (01001010, 01001)LRLL (u,v)A

(u,uv)AL (vu,v)AR

(u,uuv)ALL (uvu,uv)ALR

Figure 3.5: Standard word tree

In this section, the results about set SL(2,N) of all N2,2 matrices with
determinant equal to one, which are summarized in Appendix A, are used.

The following theorem allows us to identify the standard tree nodes with
the set SL(2,N).

Theorem 3.22. (1) For each standard pair (u,v) determinant of its ma-
trix is equal to 1.

(2) For any non-negative integer 2 × 2 matrix A with determinant equal
to one, there exists exactly one standard pair (u,v) such that A =
M (u,v).

Proof. (1) Holds that detM (0, 1) = 1, and for every node holds that
determinant of its child nodes is the same. Mathematical induction
gives us the claim.

(2) According to Lemma A.3, there exists unique factorization of matrix
A by matrices L and R. Denote n the length of the factorization, for
A = I put n = 0. We prove the claim by mathematical induction on
n.

(n = 0) Clearly det I = 1.

(n→ n+ 1) Let A = BX for X ∈ {L,R}. According to induction hy-
pothesis there exists standard pair (u′,v′) such that M (u′,v′) =
B. For X = L put u := u′, v := u′v′ and for X = R put
u := v′u′, v := v′. Then (u,v) is a standard pair and M (u,v) =
BX = A.
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From the first claim it is clear that finite products of matrices L,R
cover all matrices of standard pairs, and as the factorization is
unique, there exists exactly one standard pair with matrix A.

According to the Appendix, we can identify standard pairs with N2,2

matrices with determinant equal to 1. Set of all such matrices is a monoid
of words on the alphabet {L,R}, which can be in accordance with notation
from Chapter 2 denoted by {L,R}∗. The matrix I represents the empty
word in {L,R}∗.

Proposition 3.23. Let (u,v) be a standard pair. Then there exists word
s ∈ {0, 1}∗ such that

uv = s01 and vu = s10.

Proof. We prove the claim by induction on |uv|.

((0, 1)) For this pair, the claim holds putting s = ε.

((u,v)→ (u,uv)) Let uv = s01 and vu = s10. Then u(uv) = (us)01
and (uv)u = (us)10.

((u,v)→ (vu,v)) Let uv = s01 and vu = s10. Then (vu)v = (vs)01
and v(vu) = (vs)10.

3.5 Conjugation
Definition 3.24. Let u, ũ ∈ A∗. We say that ũ is right conjugate to u,
if there exists s ∈ A∗ such that us = sũ.

Remark. It is clear that the relation of right conjugation is symmetrical on
words, so the name “right” might seem to be unnecessary. However, it will be
naturally expanded to morphisms, for which the relation is not symmetrical.

Lemma 3.25. For finite non-empty word u ∈ A+ and for n ∈ N, there exists
exactly one s ∈ An and one ũ such that

us = sũ. (3.4)

Proof. In the proof, denote Pref(u) the set of all prefixes of the word u.
Put s as a prefix of uω such that |s| = n. Then s is unique and it is of

form ukt for some k ∈ N and t ∈ Pref(u), where Pref(u) denotes set of all
prefixes of u. Hence u = tx for some x ∈ A∗ and us = uk+1t = uktxt =
sxt, so we put ũ = xt.
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We show the uniqueness of (s, ũ). Clearly from (3.4) we have ũ given
uniquely by u and s. Let us suppose that there exists a word s′ such that
s′ /∈ Pref(uω) and take the shortest prefix of s′ that is not prefix of uω,
then it is surely of form u`ya with y ∈ Pref(u) and |y| < |u| − 1. Identity
(3.4) gives s′ = u`ya ∈ Pref(u`+1ya), but because |u| > 0, holds that
u`ya ∈ Pref(u`+1y) ⊆ Pref(uω), contradiction.

Definition 3.26. Let us take u ∈ A∗ and put n = 1 in the previous lemma,
we get a word ũ. Then we write ũ = SHL(u).

Property 3.27. For u ∈ A+ holds that SHL|u|(u) = u and for inverse
mapping holds that SHL−1(u) = SHL|u|−1(u).

Remark. We call this mapping Left SHift and the name comes from com-
puter science.

Proposition 3.28. Let p,N ∈ N be coprime integers such that p < N . Then
the set LN (p/N) is generated by any of its elements and the mapping SHL,
i.e.

LN (p/N) =
{

SHLk(u)
}
k∈Z

for any u ∈ LN (p/N).

Proof. According to Proposition 3.9 there exists j ∈ N̂ such that

u ∼ (T ip/N (j/N))N−1
i=0 .

Two inclusions will be shown.

(⊆) Let us consider any v ∈ LN (p/N),

v ∼ (T ip/N (j′/N))N−1
i=0 for some j′ ∈ N̂ .

Then clearly
v ∼ (T ip/N (j/N))j

′−j+N−1
i=j′−j ,

which, along with T ip/N (j/N) = TN+i
p/N (j/N), gives v = SHLj

′−j(u).

(⊇) Let k ∈ Z. Then
SHLk(u) ∼ (T ip/N (j/N))k+N−1

i=k = (T ip/N ((j + k)/N))N−1
i=0 ,

which means that SHLk(u) ∈ LN (p/N).

Definition 3.29. Let ϕ and ψ be morphisms over A. We say that ψ is right
conjugate to ϕ, if exists s ∈ A∗ such that

ϕ(a)s = sψ(a) for every a ∈ A.

Example. Let ϕ :
0 7→ 01001
1 7→ 010

and ψ :
0 7→ 00101
1 7→ 001

. Then putting s = 01

proves that ψ is right conjugate to ϕ.
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3.6 Sturmian morphisms
Definition 3.30. Let ϕ be a morphism over {0, 1}. We say that ϕ is stur-
mian, if it preserves sturmian words, i.e. if the word ϕ(u) is sturmian for
any u sturmian.

Property 3.31. The set of sturmian morphisms is a sub-monoid of all mor-
phisms over {0, 1}, i.e.:

(1) identity morphism I is sturmian;

(2) for any sturmian morphisms ϕ,ψ, the morphism ϕψ is sturmian.

Proof. Let u be a sturmian word. Then:

(1) I(u) = u is a sturmian word;

(2) ψ(u) is a sturmian word and hence ϕ(ψ(u)) is a sturmian word.

Definition 3.32. Let ϕ be a morphism over A. We say that ϕ is weekly
sturmian, if it preserves one sturmian word, i.e. if exists sturmian word u

such that ϕ(u) is sturmian.

In the article [2] the following theorem is proven.

Theorem 3.33. Let ϕ be a morphism over A. The following claims are
equivalent:

(1) ϕ is sturmian;

(2) ϕ is weakly sturmian;

(3) ϕ ∈ {F, F̃}

(4) the word ϕ(10010010100101) is balanced.

The following statement comes from [2], where the proof is not provided.

Lemma 3.34. Let u ∈ {0, 1}∞ be a word (finite or infinite), which is un-
balanced. Then it contains factors of form 0t0 and 1t1 such that they are
disjoint, i.e. that not any non-empty prefix or suffix of 0t0 is prefix or suffix
of 1t1.

Proof. The word u is unbalanced, therefore it contains factors x,y of the
same length such that δ(x,y) > 1. Let us take the shortest x,y with this
property, we will prove by contradiction that they have the desired form.
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Suppose that x = tx′ and y = ty′. Hence as δ(t, t) = 0, we have
δ(x′,y′) = δ(x,y) > 1, from whence it follows that |x| = |x′| and t = ε.
Similarly we can show the other cases.

Now it is clear that there exist two words t, t′ such that x = ata and
y = bt′b as the previous holds for one-letter prefixes and suffixes, particularly.
Without loss of generality, suppose a = 0 and b = 1.

Let us suppose that δ(0t0, 1t′1) > 2. Then δ(t0, t′1) > 1 forming shorter
pair, which is in contradiction with minimal length of x,y.

So δ(0t0, 1t′1) = 2, hence δ(t, t′) = 0 (the case δ(t, t′) = 4 is again in
contradiction with minimal length of x,y).

We finally show that t = t′. Let s be the longest common prefix of
t, t′. In the case that x = 0s1z0 and y = 1s0z′1 we have δ(z0, z′1) = 2,
shorter than x,y. In the case that x = 0s0z0 and y = 1s1z′1 we have
δ(0s0, 1s′1) = 2, shorter than x,y. That means that s = t = t′.

Definition 3.35. Let ϕ be a morphism over A. We say that ϕ is a standard
morphism, if exists standard pair (u,v) such that

ϕ :
0 7→ u

1 7→ v
or ϕ :

0 7→ v

1 7→ u
.

The following propositions are taken from [3], Propositions 2.3.21–22.

Proposition 3.36. Let ϕ be a standard morphism, put N = |ϕ(01)|. Then
there are exactly N − 1 morphisms right conjugate to ϕ, which means that
the longest common prefix of ϕ(0)ω and ϕ(1)ω comprises N − 2 letters.

Proposition 3.37. Morphism ψ over A is sturmian, if and only if, there
exists standard morphism ϕ such that ψ is right conjugate to ϕ.

Example. Let us take standard pair (u,v) = (010, 01001), and two standard
morphisms

ϕ[0] :
0 7→ u

1 7→ v
and ϕ̃[0] :

0 7→ v

1 7→ u
.

The process of conjugation is shown in Table 3.2. We take the words
ϕ[0](01), ϕ̃[0](01) as a whole and form a right conjugate words to this concate-
nated word; there are 8 of them, numbered 0, . . . , 7. According to Proposi-
tion 3.36, all but last are right conjugate to ϕ[0] and ϕ̃[0]. As well, we see
that ϕ[7] and ϕ̃[7] have different matrix than the previous ones.

Lemma 3.38. For each standard word u holds that u ∈ LN (p/N), where
N = |u| and p = |u|0.
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k ϕ[k](0) ϕ[k](1) k ϕ̃[k](0) ϕ̃[k](1)

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0
1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1 2 0 0 1 0 1 0 0 1
3 0 1 0 0 1 0 1 0

}
����������~

conjugate to
ϕ[0] and ϕ̃[0]

u
wwwwwwwwwwv

3 0 1 0 1 0 0 1 0
4 1 0 0 1 0 1 0 0 4 1 0 1 0 0 1 0 0
5 0 0 1 0 1 0 0 1 5 0 1 0 0 1 0 0 1
6 0 1 0 1 0 0 1 0 6 1 0 0 1 0 0 1 0
7 1 0 1 0 0 1 0 0 not conjugate 7 0 0 1 0 0 1 0 1

Table 3.2: Example of conjugate morphisms to standard morphism.

Proof. We will show that uω is a balanced word, and then, according to
Lemma 2.1.15 in [3], it is a 2iet word.

Let ϕ be a standard morphism such that ϕ(0) = u. Let us take two
factors x,y ∈ Fact`(uω) of length ` ∈ N. Then surely exists finite k ∈ N
such that x,y ∈ Fact(uk). Let us take a standard word v = 0k1, and
any sturmian word s such that v ∈ Fact(s). Then ϕ(s) is sturmian and
uk ∈ Fact(ϕ(s)). From this we have that uk is balanced and δ (x,y) ≤ 1.

So uω is a 2iet word, and counting occurrences of 0 and 1 in uω gives

uω ∼ (T ip/N (ρ))∞i=0

for some ρ ∈ [0, 1) .

Proposition 3.39. Let (u,v) be a standard pair, put N := |uv| and p :=
|uv|0. Then N and p are coprime integers and

{
SHLk(uv)

}N−1

k=0
= LN (p/N).

Proof. The fact that p and N are coprime follows from detM (u,v) = 1.
It is easy to see that for a standard pair (u,v), the word uv is a standard

word. The claim then follows from the previous lemma and from Proposition
3.28.
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Chapter 4

Amicability

Convention. Let A = {a0, . . . , ak−1} be an alphabet, and let B  A. Let
ϕ be a morphism over A such that ϕ(a0a1 . . . ak−1) ∈ B∗. Then we say that
ϕ is a morphism A→ B.

4.1 Amicable words
Definition 4.1. We define two morphisms σ01, σ10 : {0, 1, 2}∞ → {0, 1}∞ as
follows:

σ01 :
0 7→ 0
1 7→ 1
2 7→ 01

σ10 :
0 7→ 0
1 7→ 1
2 7→ 10

.

Definition 4.2. Let u,v ∈ {0, 1}∞. We say that u is amicable to v

(denoted u ∝ v), if there exists s ∈ {0, 1, 2}∞ such that

u = σ01(s) and v = σ10(s).

The word s is called ternarization of u and v and we write s =
ter(u,v).

Example. Let
u = 01 0 01 0 1 0 ,
v = 10 0 10 0 1 0 ,
s = 2 0 2 0 1 0 .

Then u ∝ v and ter(u,v) = s.

Proposition 4.3. Let u,v ∈ {0, 1}∗ be two words such that u ∝ v, and let
s := ter(u,v). Then

|u|0 = |v|0 = |s|0 + |s|2 ,
|u|1 = |v|1 = |s|1 + |s|2 .

Proof. For matrices of morphisms σ01, σ10 holds that

Mσ01 = Mσ10 =

(
1 0 1
0 1 1

)
,
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which means that
(
|s|0 + |s|2
|s|1 + |s|2

)
= M (σ01(s)) = M (u) =

(
|u|0
|u|1

)
,

and similarly for σ10 and v.

Proposition 4.4. Let x,y ∈ {0, 1}∗ and u,v ∈ {0, 1}∞ be words such that
x ∝ y and u ∝ v. Then xu ∝ yv and

ter(xu,yv) = ter(x,y) ter(u,v).

Proof. There exist s ∈ {0, 1, 2}∗ and t ∈ {0, 1, 2}∞ such that

x = σ01(s),

u = σ01(t),

y = σ10(s),

v = σ10(t).

Hence xu = σ01(st) and yv = σ10(st), which means that xu ∝ zw with
ter(xu,yv) = st.

Lemma 4.5. Put u = vaw and ũ = ṽãw̃ for some words v, ṽ ∈ {0, 1}∗ of
the same length, for some w, w̃ ∈ {0, 1}∞ of the same length, and for some
letters a, ã ∈ {0, 1}. Suppose u ∝ ũ. Then

v ∝ ṽ ∧ aw ∝ ãw̃ or va ∝ ṽã ∧ w ∝ w̃.

Proof. If a = ã then a ∝ ã and thus ter(u, ũ) = ter(v, ṽ)a ter(w, w̃).
If a = 1 and ã = 0, then necessarily v = x0 and ṽ = x̃1 for some x, x̃.

And thus ter(u, ũ) = ter(x, x̃)2 ter(w, w̃).
If a = 0 and ã = 1, then w = 1x and w̃ = 0x̃, and thus ter(u, ũ) =

ter(v, ṽ)2 ter(x, x̃).

We would like to reverse the implication in Proposition 4.4. To do so, we
need to add one additional condition.

Proposition 4.6. Let u = vw and ũ = ṽw̃ for some words v, ṽ ∈ {0, 1}∗
of the same length, and for some w, w̃ ∈ {0, 1}∞ of the same length. Suppose
u ∝ ũ and |v|0 = |ṽ|0. Then

v ∝ ṽ and w ∝ w̃.

Proof. Put s := ter(u, ũ). Take x the longest prefix of s such that σ01(x)
is a prefix of v. Then either v = σ01(x) or v = σ01(x)a for some letter
a ∈ {0, 1}.

If the first holds, then as well ṽ = σ10(x) and v ∝ ṽ.
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If the second holds, then ṽ = σ10(x)ã and a 6= ã (because if a = ã, then
σ01(xa) = v and xa is a prefix of s longer than x). But |σ01(x)|0 = |σ10(x)|0
and a 6= ã, thus |σ01(x)a|0 6= |σ10(x)ã|0, which is in contradiction with
v ∝ ṽ.

Now as x is a prefix of s, there exists y ∈ {0, 1}∞ such that s = xy,
hence w = σ01(y) and w̃ = σ10(y), giving w ∝ w̃.

Proposition 4.7. Let u,v ∈ {0, 1}∞ be two words. Then

u ∝ v ⇐⇒ E(v) ∝ E(u).

Proof. For purposes of this proof, we expand the morphism E :
0 7→ 1
1 7→ 0

over

{0, 1} to morphism D over {0, 1, 2} given as D :
0 7→ 1
1 7→ 0
2 7→ 2

.

(⇒) Holds that Eσ01D = σ10 and Eσ10D = σ01. Put s = ter(u,v). Then
σ01(D(s)) = E2σ01D(s) = Eσ10(s) = E(v) and similarly σ10(D(s)) =
E(u), which means that D(s) = ter(E(v), E(u)) and E(v) ∝ E(u).

(⇐) Applying the first implication on the right side we get u = E2(u) ∝
E2(v) = v.

Proposition 4.8. Let u,v ∈ {0, 1}∞ be two words. Then

u ∝ v ⇐⇒ vR ∝ uR.

Proof. Let x ∈ {0, 1, 2}∞. Then clearly σ01(x)R = σ10

(
xR

)
and vice versa.

Now let s := ter(u,v). Then vR = σ10(s)R = σ01

(
sR

)
and uR =

σ01(s)R = σ10

(
sR

)
, which gives vR ∝ uR and ter(vR,uR) = ter(u,v)R.

Proposition 4.9. Let u,v ∈ {0, 1}∞ be two words such that u ∝ v. Then
u ¹ v.

Proof. Put s := ter(u,v). If |s|2 = 0 then u = v.
If |s|2 ≥ 1, then we factorize the word s by the first 2, so we have

s = w2z, where |w|2 = 0. Thus u = w01σ01(z) and w10σ10(z) = v, giving
the claim.

Corollary 4.10. Let u,v ∈ {0, 1}∞ be two words of the same length. Then

u Â v =⇒ u 6∝ v.
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Definition 4.11. Let u,v ∈ {0, 1}∗ be finite words such that u ∝ v. Put

b := |ter(u,v)|2 .

Then we say that u is b-amicable to v.

Proposition 4.12. For any standard pair (u,v), the word uv is 1-amicable
to the word vu.

Proof. We know that there exists s ∈ {0, 1}∗ such that uv = s01 and
vu = s10. This gives the claim and we have ter(uv,vu) = s2.

4.2 Amicable morphisms
We want to naturally expand the relation amicability from words to mor-
phisms. The proposition will give us reason why is the definition is natural.

Definition 4.13. Let ϕ and ψ be morphisms over {0, 1}. We say that ϕ is
amicable to ψ (denoted ϕ ∝ ψ) if:

(1) ϕ(0) ∝ ψ(0);

(2) ϕ(1) ∝ ψ(1);

(3) ϕ(01) ∝ ψ(10).

We define ter(ϕ,ψ) as morphism {0, 1, 2}∞ → {0, 1, 2}∞ given by

ter(ϕ,ψ) :
0 7→ ter(ϕ(0), ψ(0))
1 7→ ter(ϕ(1), ψ(1))
2 7→ ter(ϕ(01), ψ(10))

and we call it ternarization of morphisms ϕ,ψ.

Proposition 4.14. Let ϕ and ψ be morphisms over {0, 1} such that ϕ ∝ ψ

and let u,v ∈ {0, 1}∞ such that u ∝ v. Then

ϕ(u) ∝ ψ(v).

Proof. As (ter) and (·) commute on words we can show just for (u,v) ∈
{(0, 0), (1, 1), (01, 10)} and then the claim holds from the fact, that every
pair of amicable words is generated by 3 named pairs. But the claim for 3
mentioned pairs is just the definition of amicability of morphisms.

Lemma 4.15. Let ϕ, ψ be morphisms over {0, 1}. Then

ϕ ∝ ψ if and only if (∀u,v ∈ {0, 1}∞)(u ∝ v =⇒ ϕ(u) ∝ ψ(v)).
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Proof. (⇒) This implication is the claim of previous proposition.

(⇐) Taking (u,v) ∈ {(0, 0), (1, 1), (01, 10)} leads to definition of amicability
of morphisms.

Proposition 4.16. Let ϕ,ψ, µ, ν be morphisms over {0, 1} such that ϕ ∝ ψ

and µ ∝ ν. Then µϕ ∝ νψ.

Proof. Take any u ∝ v. Then ϕ(u) ∝ ψ(v) and µ(ϕ(u)) ∝ ν(ψ(v)). And
as we took any amicable pair u,v, we get µϕ ∝ νψ.

Proposition 4.17. Let ϕ,ψ be morphisms over {0, 1}. Then

ϕ ∝ ψ if and only if EψE ∝ EϕE.

Proof. (⇒) From amicability ϕ ∝ ψ we have

EψE(0) = Eψ(1) ∝ Eϕ(1) = EϕE(0),

EψE(1) = Eψ(0) ∝ Eϕ(0) = EϕE(1),

EψE(01) = Eψ(10) ∝ Eϕ(01) = EϕE(10).

(⇐) If we apply the first implication on the right side, we get the claim.

Definition 4.18. Let ϕ,ψ be morphisms over {0, 1} such that ϕ ∝ ψ. Put

b :=
∣∣ter(ϕ(01), ψ(10)

)∣∣
2
.

Then we say that ϕ is b-amicable to ψ.
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Chapter 5

Amicable Pairs of Sturmian
Morphisms

Lemma 5.1. Let p,N ∈ N be coprime numbers such that 0 < p < N , put
m := min{p,N − p} and let b ∈ N. Then

number of b-amicable pairs in LN (p/N) =

{
N − b if 0 ≤ b ≤ m
0 otherwise

.

Proof. We will shorten T := Tp/N .
Let us suppose that p < N/2, thus m = p. For p > N/2 see comment in

the end of the proof.
According to Proposition 3.9 for the set LN (p/N) holds that

LN (p/N) = {w(j)}N−1
j=0 ,

where
w(j) ∼ (T k(j/N))N−1

k=0 .

Remember that for the letters of word w(j) we have

w
(j)
k =

{
0 if T k(ρj) < p/N

1 if T k(ρj) ≥ p/N
.

Consider w(i), w(j) for any i, j ∈ N̂ and find, for which i, j the words are
b-amicable. The following cases are discussed.

(j < i) We know that w(i) Â w(j) and according to Corollary 4.10 holds
that w(i) 6∝ w(j).

(j = i) Every word is 0-amicable to itself.

(j = i+ 1) We show that w(i) is 1-amicable to w(j).

For w(i) and w(i+1), there exactly once appears situation shown in
Figure 5.1 in the first row—exists one k ∈ N̂ such that w(i)

k = 0 and
w

(i+1)
k = 1.



5. Amicable Pairs of Sturmian Morphisms 38

0 p
N

N−p
N 1

?

0 p
N 1

?

︸ ︷︷ ︸
letter 0

︸ ︷︷ ︸
letter 1

(T k( iN )) (T k( i+1
N ))

(T k+1( iN ))(T k+1( i+1
N ))

(T k+2( iN )) (T k+2( i+1
N ))

Figure 5.1: To the proof of Lemma 5.1 for j = i+ 1.

We know that k ≤ N−1 and let us show that k ≤ N−2. Suppose k =
N−1, then 0 = w

(i)
N−1 codes T

N−1(i/N) and we have T
(
TN−1(i/N)

)
=

(N − 1)/N (see Figure 5.1). But T
(
TN−1(i/N)

)
= TN (i/N) = i/N .

Hence i = N − 1 and as j > i, holds that j � N − 1, contradiction.

Now we have w(i)
k+1 = 1 and w

(i+1)
k+1 = 0. As the situation in Figure

5.1 appears exactly once for words w(i) and w(i+1), these words can
be written as w(i) = x01y and w(j) = w(i+1) = x10y, so they are
1-amicable.

(j ∈ {i+ 2, . . . , i+ p}) Let us find the set I0 of indexes k such that the
words w(i),w(j) satisfy

w
(i)
k = 0 and w

(j)
k = 1. (5.1)

These k satisfy T k(i/N) ∈ [
0, pN

)
and T k(j/N) ∈ [ p

N , 1
)
. But (see

Figure 5.2) such points satisfy T k(j/N) = T k(i/N) + (j − i)/N . Then
(5.1) holds when T k(i/N) ∈

[
p−(j−i)

N , pN

)
. This case occurs exactly

for j − i different indexes k, hence # I0 = j − i =: b.

Let us take any k ∈ I0. We have shown that w(i)
k = 0 and w(j)

k = 1.
Now we need to show that k 6= N − 1 and w(i)

k+1 = 1 and w(j)
k+1 = 0.

We will show that k ≤ N − 2. Suppose k = N − 1. It holds
that T

(
TN−1(i/N)

)
= TN (i/N) = i/N ∈ T−1

([
0, pN

) )
=

[
N−p
N , 1

)
.

Hence i ≥ N − p and as j ≥ i+ p, holds that j � N − 1, contradiction.

As k ≤ N−2, we can compute values w(i)
k+1 and w(j)

k+1. The situation is

shown in Figure 5.2 in the second row, surely T k+1(i/N) ∈
[
N−p
N , 1

)

hence w(i)
k+1 = 1 and T k+1(j/N) ∈ [

0, pN
)
hence w(j)

k+1 = 0.
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0 p
N

N−p
N 1

?

0 p
N 1

?

︸ ︷︷ ︸
letter 0

︸ ︷︷ ︸
letter 1

(T k( iN )) (T k( i+pN )) (T k( i+p+1
N ))

(T k+1( iN ))(T k+1( i+pN )) (T k+1( i+p+1
N ))

(T k+2( iN )) (T k+2( i+pN ))(T k+2( i+p+1
N ))

Figure 5.2: To the proof of Lemma 5.1 for j = i+ p and j = i+ p+ 1.

So far, we found b occurrences of factors 01 and 10 in w(i) and w(j)

on the same positions. We need to explain why the words are equal
on all other positions. From

∣∣w(i)
∣∣
0

=
∣∣w(j)

∣∣
0
we know that # I0 =

# I1 where I1 :=
{
k ∈ N̂

∣∣∣w(i)
k = 1 and w(j)

k = 0
}
. But we know that

for every k ∈ I0, k + 1 ∈ I1. From whence it follows that I1 ={
k ∈ N̂

∣∣∣k − 1 ∈ I0
}
.

Summarized, we shown that words w(i) and w(j) differ only in blocks
01 and 10 and number of these blocks is b = j−i, which means that w(i)

is b-amicable to w(j). Finally, number of pairs of indexes (i, j) ∈ N̂×N̂
such that j − i = b is exactly N − b.

(j ∈ {i+ p+ 1, . . . }) See again the Figure 5.2, where the situation is shown
for j = i+ p + 1. There exists k such that T k(i/N) = (p− 1)/N and
T k((i+ p+ 1)/N) = 2p/N (first row in the figure).

If k = N−1, then w(i) ends by 0 and w(j) ends by 1, hence w(i) 6∝ w(j).

If k ≤ N − 2, then w(i)
k w

(i)
k+1 = 01 and w(j)

k w
(j)
k+1 = 11, hence as well

w(i) 6∝ w(j).

Let now p > N/2. Propositions 4.7 and 4.8 give u ∝ v ⇔ E
(
u

)R ∝
E(v)R. Moreover, u ∈ LN (p/N) ⇔ E(u)R ∈ LN (1 − p/N). From this is
clear that numbers of b-amicable pairs in LN (p/N) and LN (1 − p/N) are
equal.

Example. Let us explore the previous claims for p = 3 and N = 8. The
set of words L8(3/8) is shown in Table 5.1. The occurrences of 01, 10 in
consequent words are emphasized by the double line, and it is clearly seen
that the consequent words are 1-amicable.
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i w(i)

01234567

0 01011011
1 01101011
2 01101101
3 10101101
4 10110101
5 10110110
6 11010110
7 11011010

i w′(i)

01234567

0 00100101
1 00101001
2 01001001
3 01001010
4 01010010
5 10010010
6 10010100
7 10100100

Table 5.1: The sets of words w(i) ∈ L8(3/8) and w′(i) ∈ L8(5/8)

As well, we see that for instance w(1) is 3-amicable to w(4), while 01–10
pairs are on positions 56, 01 and 34.

More, the correspondence between LN (p/N) and LN (1−p/N) is shown,
holds that E(w(i))R = w′(i).

Theorem 5.2. Let A = ( p0 p1q0 q1 ) be a N2,2 matrix such that detA = p0q1 −
q0p1 = ±1. Put p := p0 +p1, N := p0 +p1 + q0 + q1 and m := min{p,N −p}.
Let b ∈ N. Then number of pairs of b-amicable sturmian morphisms with
matrix A is

for detA = +1

{
N − b if 1 ≤ b ≤ m
0 otherwise

and for detA = −1

{
N − b− 2 if 0 ≤ b ≤ m− 1
0 otherwise

.

Proof. For every k ∈ N̂ put

z[k] := SHLk(uv),

z̃[k] := SHLk(vu),

let u[k],v[k] be words such that
∣∣u[k]

∣∣ = |u|, ∣∣v[k]
∣∣ = |v| and

u[k]v[k] = z[k],
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z[N−1]

z̃[N−1]

w(1) w(N−1)

z[k]

z̃[k]

w(i) w(i+1)

z[`]

z̃[`]

w(j−1)w(j)

︸ ︷︷ ︸
b intervals

Figure 5.3: To the proof of Theorem 5.2 for detA = +1.

and define morphisms

ϕ[k] :
0 7→ u[k]

1 7→ v[k]

ϕ̃[k] :
0 7→ v[k]

1 7→ u[k]
.

From Propositions 3.36 and 3.37 we know that for k ∈ {0, . . . , N − 2},
morphism ϕ[k] is sturmian, but morphism ϕ[N−1] is not.

For k ∈ N̂ − 1 holds as well

z[k] = u[k]v[k], ϕ[k](01) = z[k], ϕ̃[k](01) = z̃[k],

z̃[k] = v[k]u[k], ϕ[k](10) = z̃[k], ϕ̃[k](10) = z[k].
(5.2)

According to Proposition 3.39 holds

{
z[k]

}N−1

k=0
= LN (p/N) =

{
w(i)

}N−1

i=0
,

hence there exists one-to-one mapping z[k] ↔ w(i) (we use notation w(i)

from the proof of Lemma 5.1). But as well, z̃[`] = z[k] where ` ≡ k + |u|
(mod N), thus there exist one-to-one mappings

z̃[`] ←→ z[k] ←→ w(i) ←→ z̃[`].

From Proposition 3.23 we know that there exists s such that z[0] = s01
and z̃[0] = s10, hence z[0] ∝ z̃[0]. For any k ∈ N̂ − 1 there exist s′, s′′ such
that z[k] = s′01s′′ and z̃k = s′10s′′, hence z[k] is 1-amicable to z̃[k]. But for
k = N − 1 holds z[N−1] = 1s0 and z̃[N−1] = 0s1, hence z[N−1] 6∝ z̃[N−1].

Now, as the only word in LN (p/N) which does not have a 1-amicable
counterpart is w(N−1), we have z[N−1] = w(N−1). Moreover, as z[k] is 1-
amicable to z̃[k] for k ∈ N̂ − 1, we have that if z[k] = w(i) then z̃[k] = w(i+1).

Let us do the proof separately for each determinant.
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z[N−1]

z̃[N−1]

w(1) w(N−1)

z[k]

z̃[k]

w(i−1)w(i)

z[`]

z̃[`]

w(j)w(j+1)

︸ ︷︷ ︸
b intervals

Figure 5.4: To the proof of Theorem 5.2 for detA = −1.

(detA = +1) Let i, j ∈ N̂ and b ∈ {1, . . . ,m} be numbers such that j− i =
b, and let k, ` ∈ N̂ − 1 be indexes such that

w(i) = z[k] = ϕ[k](01) = ϕ[k](0)ϕ[k](1)

and w(j) = z̃[`] = ϕ[`](10)

(see Figure 5.3). Then ϕ[k](01) is b-amicable to z̃[`] = ϕ[`](10). More-
over,

w(j−1) = z[`] = ϕ[`](01) = ϕ[`](0)ϕ[`](1).

and w(i) is (b−1)-amicable to w(j−1), As well, from the conjugation of
ϕ[k] and ϕ[`] we know that

∣∣ϕ[k](0)
∣∣
0

=
∣∣ϕ[`](0)

∣∣
0
. Proposition 4.6 then

gives ϕ[k](0) ∝ ϕ[`](0) and ϕ[k](1) ∝ ϕ[`](1).

From the proof it is clear that there are not any other amicable pairs.
Because when ϕ[k] ∝ ϕ[`], holds that z[k] ∝ z̃[`] and the amicability is
covered by Lemma 5.1.

The number of b-amicable morphisms follows from the lemma. Just
for b = 0 there are no 0-amicable morphisms, because if ϕ[k](01) is
0-amicable to ϕ[`](10), then ϕ[k](01) 6∝ ϕ[`](01).

(detA = −1) Let i, j ∈ N̂ and b ∈ {0, . . . ,m − 1} be numbers such that
j − i = b, and let k, ` ∈ N̂ − 1 be indexes such that

w(i) = z̃[k] = ϕ̃[k](01),

and w(j) = z[`] = ϕ̃[`](10)

(see Figure 5.4). Then ϕ̃[k](01) is b-amicable to ϕ̃[`](10). Moreover,

w(j+1) = z̃[`] = ϕ̃[`](01),

and w(i) is (b + 1)-amicable to w(j+1), which, along with
∣∣ϕ̃[k](0)

∣∣
0

=∣∣ϕ̃[`](0)
∣∣
0
, gives ϕ̃[k](0) ∝ ϕ̃[`](0) and ϕ̃[k](1) ∝ ϕ̃[`](1).
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From the last it is clear, why b = m disallows ϕ̃[k] ∝ ϕ̃[`]. As well, we
can see that indexes i and j must satisfy i ≥ 2 and j ≤ N − 2. These
conditions along with the condition j − i = b gives number of pairs of
indexes equal to N − b− 2.

Theorem 5.3. Let A = ( p0 p1q0 q1 ) be N2,2 matrix such that detA = ±1. Put
p := p0 + p1, N := p0 + p1 + q0 + q1 and m := min{p,N − p}. Then the
number of pairs of amicable sturmian morphisms with matrix A is equal to

m(N − 1) +
m

2
(
detA−m)

.

Proof. Holds that
m∑

b=1

(N − b) = m(N − 1) +
m

2
(
1−m)

and

m−1∑

b=0

(N − b− 2) = m(N − 1) +
m

2
(−1−m)

.

Conjecture 5.4. Let A = ( p0 p1q0 q1 ) ∈ N2,2 be matrix such that detA = +1.
Put p := p0+p1, q := q0+q1, N := p+q, m := min{p, q}. Let b ∈ {1, . . . ,m}
and let ϕ and ψ be sturmian morphisms such that ϕ is b-amicable to ψ and
their matrix is A.

Then for the matrix of morphism η := ter(ϕ,ψ) holds

Mη =



p0 − b0 p1 − b1 p− b
q0 − b0 q1 − b1 q − b
b0 b1 b


 ,

where
b0 = bβc or b0 = dβe, and b1 = (b− 1)− b0

for
β =

p0 + q0
N

(
b− 1

)
.

Idea of the conjecture. From the proof of previous theorems we know
that b0 + b1 = |η(0)|2 + |η(1)|2 = b − 1. The conjecture is based on the
assumption that the ratio |η(0)|2 : |η(1)|2 is similar to ratio |η(0)| : |η(1)|.

The number β is such number that the ratios satisfy

β : (p0 + q0) = (b− 1− β) : (p1 + q1) = (b− 1) :N.

Then, b0 and b′0 are the closest integers to β. The other elements of the 3×3
matrix are given uniquely by matrix A and numbers b, b0.
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By computer numeration, it was found that the conjecture is in accor-
dance with the results in [4], where particular matrices were proven to be or
not to be matrices of ternarizations.
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Chapter 6

Summary

6.1 Results
We have summarized definitions and properties of finite and infinite words
and equivalent definitions of sturmian words, as well as properties of mor-
phisms that preserve the set of sturmian words.

Our most important results are in Section 5, where the main task is
solved in two theorems, Theorem 5.2 and Theorem 5.3. We found numbers
of pairs of amicable sturmian morphisms for every matrix.

6.2 Further work
using numerical experiments, we have stated a conjecture, proof of which is
in the scope of the further work on the topic. Generally, for every matrix A
with detA = ±1, we would like to find matrices of ternarizations, and for
each matrix, find number of ternarizations.
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Appendix A

Properties of SL(2,N) Matrices

Symbol SL(2,Z) denotes set of all integer 2×2 matrices A such that detA =
+1. These matrices form a group of transformations.

If we restrict the definition to non-negative integer matrices, we get a
monoid (see below):

Definition A.1. The symbol SL(2,N) denotes set of all non-negative integer
matrices A =

(
a b
c d

) ∈ N2,2 such that detA = ad− bc = 1.

Convention. The matrices are indexed from zero, hence we write

A =

(
A00 A01

A10 A11

)
.

Definition A.2. We define matrices L,R, I ∈ SL(2,N) as follows:

L :=

(
1 0
1 1

)
, R :=

(
1 1
0 1

)
and I :=

(
1 0
0 1

)
.

Example. Inverse matrices to L,R are

L−1 =

(
1 0
−1 1

)
and R−1 =

(
1 −1
0 1

)
.

We can see that L−1,R−1 /∈ SL(2,N), which proves that SL(2,N) is not a
group.

Lemma A.3. Let A =
(
a b
c d

) ∈ SL(2,N) be a matrix. Then there exists
unique factorization by matrices L and R, which are defined before.

Proof. We will discuss the following 4 cases:

(a > b ∧ c < d) Since a, b, c, d ∈ N we may write a ≥ b+1 and d ≥ c+1 and
estimate detA = ad−bc ≥ (b+1)(c+1)−bc = b+c+1. From whence
it follows that b = c = 0 to satisfy detA = 1 and A = I = ( 1 0

0 1 ).

(a < b ∧ c > d) Equivalently a ≤ b − 1 and c − 1 ≥ d. And as a, d ≥ 0, we
have b, c ≥ 1. Hence detA = ad− bc ≤ (b−1)(c−1)− bc = 1− b− c ≤
−1, so detA 6= 1. This case cannot occur.
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(a ≤ b ∧ c ≤ d) Then the matrix B :=
(
a, b−a
c, d−c

)
is non-negative and A =

BL. Since detA = detL = 1, we have detB = 1 and thus elements a
and c are not simultaneously 0. Now clearly sum of elements of B is
strictly smaller than sum of elements of A.

(a ≥ b ∧ c ≥ d) Symmetrically to previous case we put B :=
(
a−b, b
c−d, d

)
and

get A = BR.

In each step we diminish the sum of elements of the matrix, thus after
finite number of steps we obtain the matrix I.

Finally we need to explain why the factorization is unique. Let us suppose
that both cases occur. Thus a = b and c = d, which means that detA = 0,
forming contradiction.

Corollary A.4. For every A =
(
a b
c d

) ∈ SL(2,N) either (a − b)(c − d) ≥ 0
or A = I.

Lemma A.5. Let A,A′ ∈ SL(2,N) be two matrices. Define for any matrix
G ∈ N2,2

pG := G00 + G01 (sum of top row of matrix),

qG := G10 + G11 (sum of bottom row of matrix)

and NG := pG + qG (sum of all elements of matrix).

Then
pA = pA′ ∧ NA = NA′ =⇒ A = A′.

Proof. We can easily see that if pA = pA′ and NA = NA′ , then qA = qA′ .
From the definition, it is clear that

(
pG
qG

)
= G ·

(
1
1

)
,

thus
(
pGH

qGH

)
= G ·

(
pH
qH

)
.

Let us suppose for contradiction that A 6= A′. Factorize the matrices
A, A′ according to Lemma A.3, and denote B the longest common prefix
of the factorization, hence, without the loss of generality, exists matrices
C,C′ ∈ SL(2,N) such that A = BLC and A′ = BRC′. (We should explain
why not B = A or B = A′. But if for instance B = A, then A′ = AD for
some D ∈ SL(2,N), D 6= I, thus NA′ > NA.)
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Matrix B is regular, hence

L
(
pC
qC

)
=

(
pLC

qLC

)
=

(
pB−1A

qB−1A

)
= B−1

(
pA
qA

)

= B−1

(
pA′

qA′

)
=

(
pB−1A′

qB−1A′

)
=

(
pRC′

qRC′

)
= R

(
pC′

qC′

)
=:

(
P

Q

)
.

Discuss the following cases.

(P ≥ Q) Then
(
pC
qC

)
= L−1

(
P
Q

)
=

(
P

Q−P
)
, where Q − P ≤ 0. That is in

contradiction with C ∈ SL(2,N), because it should be regular and all
its elements should be non-negative.

(P < Q) Then
(
pC′
qC′

)
= R−1

(
P
Q

)
=

(
P−Q
Q

)
, where P − Q < 0. That is in

contradiction with C′ ∈ SL(2,N).

Property A.6. The set SL(2,N) is a monoid of words over alphabet {L,R}
with the empty word I.

The claim needs to be interpreted correctly. We say that there exists
isomorphism between SL(2,N) and between words over two-letter alphabet.
That means that SL(2,N) is closed to multiplication, generated by {L,R}
and two matrices are equal, if and only if, their factorizations are equal.

Proof. Take A,B ∈ SL(2,N). Then determinant of AB is clearly one, and
elements of AB are values of non-negative integer combinations of elements
of A and B, hence non-negative integers.

The rest of claim is already proved as Lemma A.3.

Theorem A.7. The mapping A ←→ (
pA
qA

)
is one-to-one mapping between

SL(2,N) and the set of coprime pairs in N, i.e.:

(1) for every A ∈ SL(2,N) the numbers pA and qA are coprime;

(2) for every p, q ∈ N coprime there exists exactly one A ∈ SL(2,N) such
that p = pA and q = qA.

Proof. (1) For A = I holds that pA = qA = 1, and number one is
coprime with itself.

Suppose p, q coprime. Then p, p + q are coprime, and as well p + q, q

are coprime, while
(

p

p+ q

)
= L

(
p

q

)
and

(
p+ q

q

)
= R

(
p

q

)
.

Mathematical induction in length of factorization easily leads to the
claim.
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(2) The following iterative method is described. Put p0 := p, q0 := q,
A0 = I.

If pk > qk, we put pk+1 := pk − qk and qk+1 := qk. Follows
(
pk+1
qk+1

)
=

R
(
pk
qk

)
, hence we put Ak+1 := RAk.

If pk < qk, we put pk+1 := pk and qk+1 := qk − pk. Follows
(
pk+1
qk+1

)
=

L
(
pk
qk

)
, hence we put Ak+1 := LAk.

From the way we construct sequence Ak, it is clear that Ak

(
p
q

)
=

A0

(
p
q

)
=

(
p
q

)
. And from the fact that p, q are coprime, we know that

pk, qk are coprime for all k.

If pk = qk, we end the algorithm. Numbers pk, qk are coprime, hence
necessarily

(
pk
qk

)
=

(
1
1

)
=

(
pI
qI

)
and

(
p

q

)
= Ak

(
pk
qk

)
= Ak

(
pI
qI

)
=

(
pAk

qAk

)
.

Putting A := Ak gives the claim. (The uniqueness of matrix A is
shown in Lemma A.5.)
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